

Windows Server 2012
Automation with
PowerShell Cookbook

Over 110 recipes to automate Windows Server
administrative tasks by using PowerShell

Ed Goad

 BIRMINGHAM - MUMBAI

Windows Server 2012 Automation with
PowerShell Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1150313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-946-5

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

Credits

Author
Ed Goad

Reviewers
Anderson Patricio

Donabel Santos

Acquisition Editor
Kevin Colaco

Commissioning Editor
Shreerang Deshpande

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Ankita Meshram

Kirti Pujari

Varun Pius Rodrigues

Project Coordinator
Anugya Khurana

Proofreaders
Mario Cecere

Dirk Manuel

Indexer
Hemangini Bari

Graphics
Valentina D'silva

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Ed Goad is a Systems Architect who has been working in various roles in the IT field for 16
years. He first became interested in scripting and automation when presented with the task to
uninstall software from over 1,000 systems with limited time and resources. He has worked
with scripting and automation on multiple platforms and languages including PowerShell,
VBscript, C#, and BASH scripting.

Ed currently holds multiple Microsoft certifications, most recently including the Microsoft
Certified IT Professional—Enterprise Administrator. Additional non-Microsoft certifications
include VMware Certified Professional (VCP), Red Hat Certified System Administrator (RHCSA),
EMC Proven Professional, Brocade Certified Network Engineer (BCNE), and Cisco Certified
Network Associate (CCNA).

Ed is currently on sabbatical, and is volunteering full time at the Amor Fe y Esperanza
school in Honduras (http://www.afehonduras.org). There he is teaching computer
and math classes to children who live and work in the garbage dump outside of the capital
city of Tegucigalpa.

I would like to thank my parents for always encouraging me when I was
younger by telling me that I could be anything that I wanted, as long as I
had good math skills. They bought our first computer before I even started
school, and then let me break it and repair it over and over, driving my
interest in computers.

I want to thank my wife for loving me and encouraging me to grow and be
more than I was. Without her love and encouragement my life wouldn't be
nearly as full as it is now.

And lastly, I would like to thank God for his blessings and the opportunities
he has given me. As much as I have learned and accomplished, it is nothing
compared to knowing his love.

http://www.afehonduras.org

About the Reviewers

Anderson Patricio is an Exchange Server MVP and a Messaging consultant based in
Toronto, Canada, designing and deploying solutions in clients located in North and South
America. He has been working with Exchange since Version 5 and has had the opportunity
to use PowerShell since its beta release (code name Monad at that time).

Anderson contributes to the Microsoft communities in several ways. In English, his blog
www.andersonpatricio.ca is updated regularly with content for Exchange, PowerShell,
and Microsoft in general. In Portuguese, he has an Exchange resource site (www.
andersonpatricio.org). He is also a TechEd presenter in South America and also the
creator of a couple of Exchange trainings in the Brazilian Microsoft Virtual Academy (MVA).

You can follow him on Twitter at http://twitter.com/apatricio.

He is the reviewer of several books such as Windows Powershell in Action by Bruce Payette,
PowerShell in Practice by Richard Siddaway, and Microsoft Exchange 2010 PowerShell
Cookbook by Mike Pfeiffer.

Donabel Santos is a SQL Server MVP and is the senior SQL Server Developer/DBA/
Trainer at QueryWorks Solutions, a consulting and training company in Vancouver, BC. She
has worked with SQL Server since Version 2000 on numerous development, tuning, reporting,
and integration projects with ERPs, CRMs, SharePoint, and other custom applications. She
holds MCITP certifications for SQL Server 2005/2008, and an MCTS for SharePoint. She is a
Microsoft Certified Trainer (MCT), and is also the lead instructor for SQL Server Administration,
Development, Tableau, and SSIS courses at the British Columbia Institute of Technology
(BCIT). Donabel is a proud member of PASS (Professional Association of SQL Server), and
a proud BCIT alumna (CST diploma and degree).

http://www.andersonpatricio.ca
http://www.andersonpatricio.org
http://www.andersonpatricio.org

Donabel blogs (www.sqlmusings.com), tweets (@sqlbelle), speaks and presents
(SQLSaturday, VANPASS, Vancouver TechFest, and many more), trains (BCIT, QueryWorks
Solutions), and writes (Packt, Idera, SSWUG, and so on). She is the author of Packt's
SQL Server 2012 with PowerShell V3 Cookbook, and a contributing author of Manning's
PowerShell Deep Dives.

Thank you Eric, for all the support and love. Thank you for cooking the
delicious dinners that invigorate me after a long day's work. You are
my home.

Thank you to my family—Papa, Mama, JR, RR, Lisa—you all give me strength
and I am very blessed to have you in my life. Special shout out to my Tito
Boy, who proudly told people in his network about my first book – thank
you Tito Boy.

Thank you to my BCIT family—Kevin Cudihee, Elsie Au, Joanne Atha, Charlie
Blattler, Paul Mills, Bob Langelaan, Benjamin Yu, Brian Pidcock, Albert Wei
and so many others—to all of my mentors, colleagues, and students, who
never fail to inspire me to do better, be better. It's been a great ten years
teaching at BCIT—and I look forward to a lot more wonderful years
of learning, inspiring, and sharing.

Special thanks to the Microsoft team and Microsoft communities, especially
#sqlfamily. You guys are awesome and so many of you continuously and
selflessly share your knowledge and expertise to a lot of people. I've been on
the receiving end so many times, and I hope I can continue to pay it forward.
I am so proud to be part of this community.

Thank you to the PowerShell community, for the awesome blogs, books, and
tweets, which immensely helped folks to learn, understand, and get excited
about PowerShell.

Most importantly, thank you Lord, for all the miracles and blessings in
my life.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Understanding PowerShell Scripting 7

Introduction 8
Managing security on PowerShell scripts 8
Creating and using functions 11
Creating and using modules 15
Creating and using PowerShell profiles 20
Passing variables to functions 22
Validating parameters in functions 24
Piping data to functions 30
Recording sessions with transcripts 32
Signing PowerShell scripts 33
Sending e-mail 36
Sorting and filtering 38
Using formatting to export numbers 40
Using formatting to export data views 42
Using jobs 44
Dealing with errors in PowerShell 46
Tuning PowerShell scripts for performance 49
Creating and using Cmdlets 51

Chapter 2: Managing Windows Network Services with PowerShell 59
Introduction 60
Configuring static networking 60
Installing domain controllers 67
Configuring zones in DNS 70
Configuring DHCP scopes 75
Configuring DHCP server failover 77
Converting DHCP addresses to static 78

ii

Table of Contents

Building out a PKI environment 80
Creating AD users 84
Searching for and reporting on AD users 89
Finding expired computers in AD 90
Creating and e-mailing a superuser report 92

Chapter 3: Managing IIS with PowerShell 97
Introduction 97
Installing and configuring IIS 98
Configuring IIS for SSL 100
Configuring a Central Certificate Store 103
Configuring IIS bindings 106
Configuring IIS logging 109
Managing log files 111
Configuring NLB across multiple servers 112
Monitoring load balancing across NLB nodes 116
Placing NLB nodes into maintenance 118
Configuring a development/staging/production site scheme 120
Promoting content in websites 121
Reporting on website access and errors 123

Chapter 4: Managing Hyper-V with PowerShell 127
Introduction 128
Installing and configuring Hyper-V 128
Configuring NUMA 131
Securing Hyper-V 133
Hyper-V networking 136
Creating virtual machines 139
Managing VM state 141
Configuring VM networking 144
Configuring VM hardware 146
Quickly deploying VMs using a template 148
Managing and reporting on VM snapshots 150
Monitoring Hyper-V utilization and performance 153
Synchronizing networks between Hyper-V hosts 157
Hyper-V replication 159
Migrating VMs between hosts 163
Migrating VM storage between hosts 166
Using failover clustering to make VMs highly available 168

iii

Table of Contents

Chapter 5: Managing Storage with PowerShell 173
Introduction 173
Managing NTFS file permissions 173
Managing NTFS alternate streams 178
Configuring NTFS deduplication 182
Monitoring NTFS deduplication 184
Configuring storage pools 186
Reporting on storage pools 188
Managing file quotas 190

Chapter 6: Managing Network Shares with PowerShell 195
Introduction 195
Creating and securing CIFS shares 196
Accessing CIFS shares from PowerShell 200
Creating iSCSI target and virtual disk 202
Using a iSCSI disk 204
Configuring and using iSNS 206
Creating an NFS export 209
Mounting NFS exports 212
Making CIFS shares highly available 214
Configuring DFS and DFSR replication 218
Configuring BranchCache 221

Chapter 7: Managing Windows Updates with PowerShell 225
Introduction 226
Installing Windows Server Update Services 226
Configuring WSUS update synchronization 229
Configuring the Windows update client 232
Creating computer groups 235
Configuring WSUS auto-approvals 236
Reporting missing updates 239
Installing updates 241
Uninstalling updates 244
Configuring WSUS to inventory clients 246
Creating an update report 249
Exporting WSUS data to Excel 253

Chapter 8: Managing Printers with PowerShell 257
Introduction 257
Setting up and sharing printers 258
Changing printer drivers 260
Reporting on printer security 261

iv

Table of Contents

Adding and removing printer security 264
Mapping clients to printers 266
Enabling Branch Office Direct Printing 270
Reporting on printer usage 273

Chapter 9: Troubleshooting Servers with PowerShell 277
Introduction 277
Testing if a server is responding 277
Using troubleshooting packs 280
Using Best Practices Analyzers 282
Searching event logs for specific events 286
Forwarding event logs to a central log server 288

Chapter 10: Managing Performance with PowerShell 295
Introduction 295
Reading performance counters 295
Configuring Data Collector Sets 299
Reporting on performance data 304
Generating graphs 306
Creating a server performance report 309

Chapter 11: Inventorying Servers with PowerShell 313
Introduction 313
Inventorying hardware with PowerShell 313
Inventorying the installed software 316
Inventory system configuration 318
Reporting on system security 321
Creating a change report 327
Exporting a configuration report to Word 329

Chapter 12: Server Backup 335
Introduction 335
Configuring backup policies 335
Initiating backups manually 338
Restoring files 341
Restoring Windows system state 343
Restoring application data 344
Creating a daily backup report 346

Index 349

Preface
Automating server tasks allows administrators to repeatedly perform the same, or similar,
tasks over and over again. With PowerShell scripts, you can automate server tasks and
reduce manual input, allowing you to focus on more important tasks.

Windows Server 2012 Automation with PowerShell will show several ways for a Windows
administrator to automate and streamline his/her job. Learn how to automate server tasks
to ease your day-to-day operations, generate performance and configuration reports, and
troubleshoot and resolve critical problems.

Windows Server 2012 Automation with PowerShell will introduce you to the advantages
of using Windows Server 2012 and PowerShell. Each recipe is a building block that can
easily be combined to provide larger and more useful scripts to automate your systems.
The recipes are packed with examples and real world experience to make the job of
managing and administrating Windows servers easier.

The book begins with automation of common Windows Networking components such as
AD, DHCP, DNS, and PKI, managing Hyper-V, and backing up the server environment. By
the end of the book you will be able to use PowerShell scripts to automate tasks such
as performance monitoring, reporting, analyzing the environment to match best practices,
and troubleshooting.

What this book covers
Chapter 1, Understanding PowerShell Scripting, explains how to use basic PowerShell
features such as functions, cmdlets, modules, and loops. These are the basic building
blocks of PowerShell that are used repeatedly and in various forms.

Chapter 2, Managing Windows Network Services with PowerShell, covers the installation
and configuration of Active Directory, DNS, DHCP, and Certificate Services. This chapter
should cover everything necessary to prepare an environment as a fully functioning
Active Directory domain for use in labs or new domain build-outs.

Preface

2

Chapter 3, Managing IIS with PowerShell, covers how to install, configure, manage, and
maintain IIS websites on Windows Server 8. In addition to basic management of IIS, this
will also cover monitoring and reporting of IIS, using NLB for load balancing, and utilizing
a dev/staging/prod configuration/promotion scheme. This chapter should cover everything
necessary to set up and configure a load-balanced dev/test/prod web environment and
automate code promotion.

Chapter 4, Managing Hyper-V with PowerShell, covers installing, configuring, and managing
Hyper-V servers and guest OSs. In addition to basic management of Hyper-V, this chapter
also covers how to automate the deployment and management of guest VMs, managing
VM snapshots, migrate VMs between hosts and prepare a host for maintenance, and how
to utilize clustering to make highly-available VMs. This chapter should cover everything
necessary to set up and manage an enterprise Hyper-V farm, including reporting,
performing maintenance, and monitoring performance.

Chapter 5, Managing Storage with PowerShell, covers how to configure and manage
storage using traditional disk, storage pools, reduplication, and SANs.

Chapter 6, Managing Network Shares with PowerShell, covers creating, managing,
securing, and using CIFS, NFS, and iSCSI shares. This chapter will also cover how to
use server clustering to create highly available network shares, managing replication,
and configuring BranchCache.

Chapter 7, Managing Windows Updates with PowerShell, This chapter details the installation
and configuration of WSUS as well as the Windows Update client. Additionally, this chapter
will include methods to report on installed updates and to automate update installation.

Chapter 8, Managing Printers with PowerShell, covers creation, managing, and updating
of printers on print servers. This will also include using PowerShell to map clients to
printers and using Windows Clustering to make highly available print servers.

Chapter 9, Troubleshooting Servers with PowerShell, covers utilization of PowerShell
troubleshooting packs, Windows Best Practice Analyzers, and using Windows Event Logs.
This will also include basic monitoring and configuration of services as well as creating
a central Event Log server.

Chapter 10, Managing Performance with PowerShell, shows how to use PowerShell to
track and report on historical performance and identify bottlenecks. This chapter will
also show how to integrate PowerShell objects with Excel to create usable performance
reports and graphs.

Chapter 11, Inventorying Servers with PowerShell, explains how to inventory the hardware
and software configurations of Windows 8 servers and create a detailed inventory and
configuration report. Additionally, this chapter will cover methods to track configuration
changes over time and export the configuration report via Word. This chapter should cover
everything necessary to create a centralized hardware and software inventory of all servers
in the enterprise.

Preface

3

Chapter 12, Server Backup, covers setting up and scheduling backups on a Windows
server. This will include on-demand backups, restoring files, and Windows components,
and standardizing the configuration amongst systems.

What you need for this book
To make efficient use of this book, you will need Windows Server 2012 and Microsoft Office
to perform code testing and practically implement the recipes mentioned in the book.

Who this book is for
This book is written to assist the daily tasks for systems administrators, engineers, and
architects working with Windows Server 2012.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The installer is a fairly simple class, similar to
the cmdlet class, which inherits the PSSnapin class and contains overrides that return
information about the cmdlet."

A block of code is set as follows:

Function Multiply-Numbers
{
 Param($FirstNum, $SecNum)
 Try
 {
 Write-Host ($FirstNum * $SecNum)
 }
 Catch
 {
 Write-Host "Error in function, present two numbers to
multiply"
 }
}

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Write-Host "Static Size:`t`t" ("{0:0000000000.00}" -f $jenny)
Write-Host "Literal String:`t`t" ("{0:000' Hello '000}" -f $jenny)
Write-Host "Phone Number:`t`t" ("{0:# (###) ### - ####}" -f
($jenny*10000))

Any command-line input or output is written as follows:

Block-SmbShareAccess -Name Share2 -AccountName CORP\joe.smith `

-Confirm:$false

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Understanding

PowerShell Scripting

In this chapter we will cover the following recipes:

 f Managing security on PowerShell scripts

 f Creating and using functions

 f Creating and using modules

 f Creating and using PowerShell profiles

 f Passing variables to functions

 f Validating parameters in functions

 f Piping data to functions

 f Recording sessions with transcripts

 f Signing PowerShell scripts

 f Sending e-mail

 f Sorting and filtering

 f Using formatting to export numbers

 f Using formatting to export data views

 f Using jobs

 f Dealing with errors in PowerShell

 f Tuning PowerShell scripts for performance

 f Creating and using Cmdlets

Understanding PowerShell Scripting

8

Introduction
This chapter covers the basics related to scripting with PowerShell. PowerShell was released
in 2006 and is installed by default starting with Windows 7 and Server 2008R2. PowerShell
is also available as a download for Windows XP, Windows Vista, and Server 2003. One of
the main differences between PowerShell and VBScript/JScript, the other primary scripting
languages for Windows, is that PowerShell provides an interactive runtime. This runtime
allows a user to execute commands in real time, and then save these commands as scripts,
functions, or modules to be used later.

Since its introduction, support for PowerShell has increased dramatically. In addition
to managing Windows environments, Microsoft quickly created snap-ins for additional
applications such as Exchange Server, the System Center suite, and clustering. Additional
vendors have also created snap-ins for PowerShell, with some of the most popular being
VMware and NetApp.

Many of the recipes presented here are the building blocks commonly used in
PowerShell such as signing scripts, using parameters, and sorting/filtering data.

Managing security on PowerShell scripts
Due to the powerful capabilities of PowerShell, maintaining a secure environment is
important. Executing scripts from untrustworthy sources could damage data on your system
and possibly spread viruses or other malicious code. To deal with this threat, Microsoft has
implemented Execution Policies to limit what scripts can do.

The execution policies only limit what can be performed by scripts,
modules, and profiles, these policies do not limit what commands
are executed in the interactive runtime.

How to do it...
In this recipe, we will view the system's current execution policy and change it to suit
various needs. To do this, carry out the following steps:

1. To find the system's current execution policy, open PowerShell and execute
Get-ExecutionPolicy.

Chapter 1

9

2. To change the system's execution policy, run Set-ExecutionPolicy <policy
name> command.

3. To reset the execution policy to the system default, set the policy to Undefined.

4. To change the execution policy for a specific session, go to Start | Run and enter
PowerShell.exe –ExecutionPolicy <policy name>.

How it works...
When a script is executed, the first thing PowerShell does is, determine the system's
execution policy. By default, this is set to Restricted, which blocks all the PowerShell scripts
from running. If the policy allows signed scripts, it analyzes the script to confirm it is signed
and that the signature is from a trusted publisher. If the policy is set to unrestricted, then
all the scripts run without performing checking.

Understanding PowerShell Scripting

10

Setting the execution policy is simply done via the command. Here we see several examples
of viewing and setting the execution policy to various settings. There are six execution
policies as follows:

 f Restricted: No scripts are executed. This is the default setting.

 f AllSigned: This policy allows scripts signed by a trusted publisher to run.

 f RemoteSigned: This policy requires remote scripts to be signed by a
trusted publisher.

 f Unrestricted: This policy allows all scripts to run. It will still prompt for
confirmation for files downloaded from the internet.

 f Bypass: This policy allows all scripts to run and will not prompt.

 f Undefined: This policy resets the policy to the default.

When changing the execution policy, you will be prompted via a command line or pop-up
window to confirm the change. This is another level of security, but can be disabled by
using the –Force switch.

There's more...
 f Approving publishers: When running scripts from new publishers, there are two

primary methods for approving them. The first method is to open the certificates
MMC on the local computer and import the signer's CA into the Trusted Publishers
store. This can be done manually or via a group policy. The second method is to
execute the script, and when prompted, approve the publisher.

 f Defining execution policy via GPO: The execution policy for individual computers,
groups, or enterprise can be controlled centrally using group policies. The policy
is stored under Computer Configuration | Policies | Administrative Templates |
Windows Components | Windows PowerShell. Note however that this policy only
applies to Windows 7/2008 or newer operating systems.

 f Permissions to change the execution policy: Changing the execution policy is a
system-wide change, and as such requires administrator level permissions. With
Windows default access controls in place, this also requires you to start PowerShell
as an administrator.

Changing the execution policy requires elevated permissions to run, so you may need
to open PowerShell with Run as administrator to set the policy. If you are attempting
to change the policy without sufficient permission, an error will be returned.

Chapter 1

11

Best practice is to enforce some level of signature checking in most
environments. In Dev/Test environments, it may be common to set the
policy to Unrestricted to expedite testing, but it is always suggested to
require fully signed scripts in production environments.

Creating and using functions
Functions could be considered one of the cornerstones of PowerShell scripting. Functions
allow for individual commands or groups of commands and variables to be packaged into a
single unit. These units are reusable and can then be accessed similar to native commands
and Cmdlets, and are used to perform larger and more specific tasks.

Unlike Cmdlets, which are precompiled, functions are interpreted at runtime. This increases
the runtime by a small amount (due to the code being interpreted by the runtime when
executed), but its performance impact is often outweighed by the flexibility that the scripted
language provides. Because of this, functions can be created without any special tools,
then debugged, and modified as needed.

Let's say we are preparing for Christmas. We have made a large list of things to complete
before the Christmas morning—wrap the presents, decorate the tree, bake cookies, and so
on. Now that we have our list, we need to know how long we have until Christmas morning.
In this way, we can prioritize the different tasks and know which ones can wait until later.

We could use something simple like a calendar, but being PowerShell experts, we
have decided to use PowerShell to tell us how many days there are until Christmas.

Understanding PowerShell Scripting

12

How to do it...
Carry out the following steps:

1. We start by identifying the necessary PowerShell commands to determine the
number of days until Christmas.

2. Next, we combine the commands into a function:
Function Get-DaysTilChristmas
{
<#
 .Synopsis
 This function calculates the number of days until Christmas
 .Description
 This function calculates the number of days until Christmas
 .Example
 DaysTilChristmas
 .Notes
 Ed is really awesome
 .Link
 Http://blog.edgoad.com
 #>
 $Christmas=Get-Date("25 Dec " + (Get-Date).Year.ToString() + "
7:00 AM")
 $Today = (Get-Date)
 $TimeTilChristmas = $Christmas - $Today
 Write-Host $TimeTilChristmas.Days "Days 'til Christmas"
}

3. Once the function is created, we either type it or copy/paste it into a
PowerShell console.

4. Finally, we simply call the function by the name, Get-DaysTilChristmas.

Chapter 1

13

How it works...
In the first step, we are attempting to find out how many days until Christmas using the
basic PowerShell commands. We begin by using the Get-Date command to calculate the
exact date of Christmas and put this into a variable named $Christmas. Actually, we are
calculating the date and time until 7 a.m. Christmas morning—in this case, the time I plan
to begin opening presents.

Next, we execute the Get-Date function without any parameters to return the current
date and time into another variable named $Today. We create a third variable named
$TimeTilChristmas, and subtract our two dates from each other. Finally, we write out
the number of days remaining.

Note: This assumes that the script is being executed before December
25th in the year. If this script is run after the 25th of December, a
negative number of days will be returned.

The second step uses exactly the same commands as the first, except with the commands
being included in a function. The Function command bundles the code into a reusable
package named Get-DaysTilChristmas.

The function is input into PowerShell manually, via copy/paste or other methods. To use the
function once it is created, just call it by its name.

At its simplest, a function is composed of the Function keyword, a function name, and
commands encapsulated in curly braces.

Function FunctionName{
 # commands go here
}

The benefit of packaging the code as a function is that now it can be accessed by a name,
without having to retype the original commands. Simply running Get-DaysTilChristmas
again and again will continue to run the function and return the results.

Understanding PowerShell Scripting

14

There's more...
 f Function scope: Custom functions are traditionally limited to the currently active

user session. If you create a function such as Get-DaysTilChristmas, and then
open a new PowerShell window, the function will not be available in the new session,
even though it is still available in the original session. Additionally, if you close
your original session, the function will be removed from the memory and won't
be available until it is re-entered.

 f Variable types: It may be interesting to note that the variables $Christmas and
$Today are of different types than $TimeTilChristmas. The first two are date
and time variables which refer to a specific point in history (year, month, day, hour,
minute, second, millisecond, ticks). $TimeTilChristmas however is a time
span; which refers to a length of time (day, hour, minute, second, millisecond,
ticks), relative to a specific time. The type of a variable can be viewed by typing
$<variableName>.GetType() as shown in the following screenshot:

 f Returning content: This function in its current form returns the number of days
until Christmas, but that is all. Because the function uses date and time variables,
it can easily include the number of hours, minutes, and seconds as well. See
Get-Date | Get-Member for a list of properties that can be accessed.

 f Naming of functions and commands in PowerShell: Commands in PowerShell
are traditionally named in a verb-noun pair, and for ease of use, a similar process
should be used when naming custom functions. You can see in this example, we
named the function Get-DaysTilChristmas, the verb Get, tells us that we are
getting something. The noun DaysTilChristmas tells us what object we are
working with. There are several common verbs such as Get, Connect, Find, and
Save that should be used when possible. The noun in the verb-noun pair is often
based on the object you are working with or the task you are doing. A full list of
verbs for PowerShell can be found by executing Get-Verb.

Chapter 1

15

Creating and using modules
Modules are a way of grouping functions for similar types of tasks or components into a
common module. These modules can then be loaded, used, and unloaded together as
needed. Modules are similar in concept to libraries in the Windows world—they are used
to contain and organize tasks, while allowing them to be added and removed dynamically.

An example of a module is working with the DNS client. When working with the DNS client,
you will have various tasks to perform: get configuration, set configuration, resolve hostname,
register client, and so on. Because all of these tasks have to do with a common component,
the DNS client, they can be logically grouped together into the DNSClient module. We
can then view the commands included in the module using Get-Command –Module
DnsClient as shown in the following screenshot:

Here we will show how to create a module for containing common functions that can be
loaded as a unit. Because modules typically group several functions together, we will start
off by creating multiple functions.

For our recipe, we will be creating a module named Hello. In this example, we have
created two simple "Hello World" type functions. The first simply replies "Hello World!",
while the second takes a name as a variable and replies "Hello <name>".

How to do it...
Carry out the following steps:

1. Create several functions that can be logically grouped together.
Function Get-Hello
{
 Write-Host "Hello World!"
}
Function Get-Hello2
{
 Param($name)
 Write-Host "Hello $name"
}

Understanding PowerShell Scripting

16

2. Using the PowerShell ISE or a text editor, save the functions into a single file
name Hello.PSM1.

3. If the folder for the module doesn't exist yet, create the folder.
$modulePath = "$env:USERPROFILE\Documents\WindowsPowerShell\
Modules\Hello"

if(!(Test-Path $modulePath))

{

 New-Item -Path $modulePath -ItemType Directory

}

4. Copy Hello.PSM1 to the new module folder.
$modulePath = "$env:USERPROFILE\Documents\WindowsPowerShell\
Modules\Hello"
Copy-Item -Path Hello.PSM1 -Destination $modulePath

5. In a PowerShell console, execute Get-Module –ListAvailable to list all
the available modules:

A large list of modules will likely be returned. The modules in the current
user's profile will be listed first, and you may need to scroll up the
PowerShell window to see them listed.

6. Run Import-Module Hello to import our new module.

See the recipes Managing Security on PowerShell Scripts and Signing
PowerShell Scripts for information about the security requirements for
using modules.

Chapter 1

17

7. Run Get-Command –Module Hello to list the functions included in the module:

8. Execute the functions in the module as normal:

How it works...
We start off by identifying several functions or commands to group together as a module. These
commands do not necessarily have to relate to each other, but it is often best to organize them
as well as possible. The commands are then saved into a single file with a .PSM1 file extension.
This file extension indicates to PowerShell that the file is a PowerShell module.

The module is then stored in the user's profile directory. If the folder doesn't already exist, we
create a new folder named the same as the module. Once the folder exists, we copy the .PSM1
file into the folder. PowerShell automatically searches this location for new modules to load.

There are two locations PowerShell looks for installed modules: C:\
Windows\system32\WindowsPowerShell\v1.0\Modules\ and
%userprofile%\Documents\WindowsPowerShell\Modules.
The first location is used by the entire system and requires administrative
permission to access; most third party modules are installed here. The
second location is user specific and does not require elevated rights to
install scripts.

Once saved, we can load the module to the memory. The command Import-Module loads
the contents of the module and makes the commands available for use. We can then view
the contents of the module using Get-Command –Module Hello. This returns all publicly
available functions in the module.

Understanding PowerShell Scripting

18

Modules are viewed by PowerShell similar to scripts and they rely on
the same security requirements as other scripts. Because of these
restrictions, it is best practice to sign your modules once they have
been created.

Finally, once the module is loaded, we can execute the included commands.

There's more...
 f Auto-loading of modules: PowerShell 3.0 automatically imports modules as they are

needed. While it is best practice to load and unload modules, you do not necessarily
have to use Import-Module prior to accessing the functions contained within.
As you can see in the following screenshot, I listed the currently loaded modules
using Get-Module. Once I confirmed my new Hello module was not loaded, I then
execute the Get-Hello2 function in the module which completed successfully.
Executing Get-Module again shows the module has been automatically loaded.

 f Module manifest: In addition to the modules themselves, you can also create
a module manifest. A module manifest is a file with a .PSD1 extension that
describes the contents of the module. Manifests can be useful because they
allow for defining the environment in which a module can be used, its dependencies,
additional help information, and even which set of commands to make
available. The following code is a basic example of creating a manifest
for our Hello World module:
New-ModuleManifest -Path "$env:USERPROFILE\Documents\
WindowsPowerShell\Modules\Hello\Hello.PSD1" -Author "Ed Goad"
-Description "Hello World examples" -HelpInfoUri "http://blog.
edgoad.com" -NestedModules 'Hello.PSM1'

Chapter 1

19

Once the manifest is created, we can view the manifest properties using the
following code:

Get-Module Hello -ListAvailable | Format-List -Property *

See also
More information about creating and using PowerShell modules can be found at:

 f http://blogs.technet.com/b/heyscriptingguy/archive/2012/05/24/
use-a-module-to-simplify-your-powershell-profile.aspx

 f http://msdn.microsoft.com/en-us/library/windows/desktop/
dd901839(v=vs.85).aspx

http://blogs.technet.com/b/heyscriptingguy/archive/2012/05/24/use-a-module-to-simplify-your-powershell-profile.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/05/24/use-a-module-to-simplify-your-powershell-profile.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/05/24/use-a-module-to-simplify-your-powershell-profile.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd901839(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd901839(v=vs.85).aspx

Understanding PowerShell Scripting

20

Creating and using PowerShell profiles
User profiles are used to set up user customized PowerShell sessions. These profiles can be
blank, contain aliases, custom functions, load modules, or any other PowerShell tasks. When
you open a PowerShell session, the contents of the profile are executed the same as executing
any other PowerShell script.

How to do it...
In this recipe, we will modify the PowerShell console profile for the current user on the current
host. By default the profile file does not exist, so we will create the file, and then configure it
to create a transcript of our actions. To do this, carry out the following steps:

1. Open the PowerShell console (not the ISE) and list your current profile locations
by executing $PROFILE or $PROFILE | Format-List * -Force|:

2. If the CurrentUserCurrentHost profile file doesn't already exist, create the
folder and file structure:
$filePath = $PROFILE.CurrentUserCurrentHost
if(!(Test-Path $filePath))
{
 New-Item -Path $filePath -ItemType File
}

3. Edit the CurrentUserCurrentHost profile by opening it in a text editor.
Make the necessary changes and save the file.

Chapter 1

21

NOTE: It is best practice to sign your profiles after making
changes. This ensures that the profile is secure and hasn't
been unintentionally changed.
More information about code signing in PowerShell can be
found in the recipe Signing PowerShell scripts

How it works...
When a PowerShell session is started, the profile files are executed before the session
is handed over to the user. At that time, any aliases or modules that were loaded will be
in effect. Additionally, any background commands, such as Start-Transcript, will
continue to operate in the background.

We start by opening PowerShell and listing our profile files. By default, $PROFILE
command only returns the CurrentUserCurrentHost profile. By piping the output
through Format-List with the –Force switch, we can see all applicable profile files.

In this example we are specifically using the PowerShell
console, instead of the PowerShell ISE, because the Start-
Transcript command is only supported in the console.

There's more…
There are six user profile files in total, and they are applied to PowerShell sessions one at
a time. First the more general profiles, such as AllUsersAllHosts are applied, ending
with more specific profiles such as CurrentUserCurrentHost. As the individual profiles
are applied, any conflicts that arise are simply overwritten by the more specific profile.

Not all six profiles are used at a time, and by default, these profiles are empty. Two of the
profiles are specific to the PowerShell console, and two of them are specific to the PowerShell
ISE. At the most, you can have four active profiles on a given session.

Understanding PowerShell Scripting

22

See also
 f More information on PowerShell profiles can be found at http://msdn.

microsoft.com/en-us/library/windows/desktop/bb613488(v=vs.85).
aspx

 f More information on PowerShell security can be found in the recipes:

 � The Managing security on PowerShell scripts recipe

 � The Signing PowerShell scripts recipe

Passing variables to functions
One of the most powerful features of PowerShell functions is in using variables to pass data
into the function. By passing data into a function, the function can be more generic, and can
perform actions on many types of objects.

In this recipe, we will show how to accept variables in functions, and how to report errors if a
mandatory variable is not included.

How to do it...
1. For this recipe we will be using the following function.

Function Add-Numbers
{
 Param(
 [int]$FirstNum = $(Throw "You must supply at least 1 number")
 , [int]$SecondNum = $FirstNum
)
 Write-Host ($FirstNum + $SecondNum)
}

How it works...
At the beginning of the function we reference the Param() keyword which defines the
parameters the function will accept. The first parameter, $FirstNum, we define as being
mandatory and of type [int] or integer. We did not have to classify the parameter type,
and the function would have worked without this, but it's a good practice to validate the
input of your functions.

The second parameter, $SecondNum, is also typed as [int], but also has a default
value defined. This way if no value is passed for the second parameter, it will default
to the $FirstNum.

http://msdn.microsoft.com/en-us/library/windows/desktop/bb613488(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb613488(v=vs.85).aspx

Chapter 1

23

When the function runs, it reads in the parameters from the command line and attempts to
place them in the variables. The parameters can be assigned based on their position in the
command line (that is, the first number is placed into $FirstNum, and the second number
is placed into $SecondNum). Additionally, we can call the function using named parameters
with the –FirstNum and –SecondNum switches. The following screenshot gives an example
of this:

If a parameter has a Throw attribute assigned, but the value is not provided, the function will
end and return an error. Additionally, if a parameter has a type defined, but the value received
is incompatible (such as a string being placed into an integer), the function will end and return
an error.

There's more...
Functions are not only capable of receiving input, but also returning output. This ability
can come in very handy when trying to return values into other variables instead of simply
returning the values to the screen. In our example, we can replace our Write-Host
command with a Return command.

#Write-Host ($FirstNum + $SecondNum)
Return ($FirstNum + $SecondNum)

The output of the function is mostly the same, except now we can assign the output to a
variable and use that variable at a later time.

In addition to returning values from functions, Return also
causes the function to exit. The Return command should always
be placed at the end of a function, or at a point where processing
of the function should stop.

Understanding PowerShell Scripting

24

Validating parameters in functions
Whenever a script or program receives data from an unknown source, the general rule is that
the data should be validated prior to being used. Validation can take many forms, with simple
validations such as confirming the value exists, is of the right type, or fits a predefined format.
Validation can also be complex multi-stage events such as ensuring a username exists in a
database before prompting for a password.

This section will review several basic validation-testing methods for use in PowerShell.

How to do it...
Here we will discuss creating a function without input validation:

1. Create a basic function with no input validation:
Function Hello-World
{
 param($foo)
 "Hello $foo"
}

2. Test the function using different input types.

Update the function to perform input type validations as discussed in the following steps:

3. Update the function to include the basic string validation.
Function Hello-WorldString
{
 param([string] $foo)
 "Hello $foo"
}

Chapter 1

25

4. Test the function using different input types:

5. Update the function to perform basic integer validation.
Function Hello-WorldInt
{
 param([int] $foo)
 "Hello $foo"
}

6. Test the function using different input types:

7. Update the function to perform basic float validation.
Function Hello-WorldFloat
{
 param([float] $foo)
 "Hello $foo"
}

8. Test the function using different input types:

Understanding PowerShell Scripting

26

9. Update the function to perform basic array validation.
Function Hello-WorldStringArray
{
 param([string[]] $foo)
 "Hello " + $foo[0]
}

10. Test the function using different input types:

Update the functions to perform validation of input values:

1. Create a function to validate the length of a parameter:
function Hello-WorldLength{
 param([ValidateLength(4,10)] $foo)
 "Hello $foo"
}

2. Test the function using different input types:

3. Create a function to validate a number in a range:
function Hello-WorldAge{
 param([ValidateRange(13,99)] $age)
 "Hello, you are $age years old"
}

Chapter 1

27

4. Test the function using different input types:

5. Create a function to validate a set of parameters:
function Hello-WorldSize{
 param([ValidateSet("Skinny", "Normal", "Fat")] $size)
 "Hello, you are $size"
}

6. Test the function using different input types:

7. Create a function that validates against a script:
function Hello-WorldAge2{
 param([ValidateScript({$_ -ge 13 -and $_ -lt 99})] $age)
 "Hello, you are $age years old"
}

Understanding PowerShell Scripting

28

8. Test the function using the different input types:

9. Create a function to validate the input as a phone number:
Function Test-PhoneNumber
{
 param([ValidatePattern("\d{3}-\d{4}")] $phoneNumber)
 Write-Host "$phoneNumber is a valid number"
}

10. Execute the Test-PhoneNumber function using different input types:

Use custom validation to test parameters inside our function:

1. Update the function to use custom validation internal to the script with regular
expressions:
Function Test-PhoneNumberReg
{
 param($phoneNumber)
 $regString=[regex]"^\d{3}-\d{3}-\d{4}$|^\d{3}-\d{4}$"
 if($phoneNumber -match $regString){
 Write-Host "$phoneNumber is a valid number"
 } else {
 Write-Host "$phoneNumber is not a valid number"
 }
}

Chapter 1

29

2. Test the function using different input types:

How it works...
We start off with a simple Hello-World function with no input validation. Three different
calls to the function are performed, one with a username (as the function was designed
to work), one with a number, and yet another without any parameters. As you can see,
all three commands complete successfully without returning errors.

In the first group of functions in the steps 3 to 10, we see a set of examples using Type
Validation to confirm the parameters are of a specific type. There are four iterations of
the Hello-World example that accept a string, integer, float, and array as inputs.
As you see from the calls to Hello-WorldString, both text and numbers are viewed as
strings and return successfully. However, the calls to Hello-WorldInt succeed when a
number is passed, but fail when text is passed.

You may notice that the original number 867.5309 passed to the function
Hello-WorldInt was rounded and truncated when returned. This is
because integers are whole numbers—that is, not partial numbers. When
the number was cast as an integer, it was rounded to the nearest whole
value, which in this case caused it to round up to 868.

In the second set of functions in steps 11 to 20, we see a set of examples using basic input
validation. These functions use ValidateLength, ValidateRange, ValidateSet,
ValidateScript, and ValidatePattern attributes of the parameters to validate the
input. Additionally, these validation types can be used in conjunction with the basic type
validations to further ensure the input is of the correct type and value.

The last set of examples in steps 21 to 24 perform validation internal to the script, instead
of relying on the in-built validation. The function named Test-PhoneNumberReg uses a
regular expression in order to validate the input as part of the script. Instead of relying on
validation using types or ValidatePattern, this function simply passes the variable to
the PowerShell code in order to check the input. By managing the validation as part of the
function, we have more flexibility on how we handle and present validation errors to our
users, and can return a more user-friendly message to the end user.

Understanding PowerShell Scripting

30

There's more...
It is considered a best practice to perform at least basic validation for all inputs. Lack of input
validation can result in the function crashing, operating unpredictably, or even resulting in
damaging data in your environment. This has been a common method for computer attackers
to access secure systems and should be taken diligently.

See also
 f More information about using regular expressions for validation can be found at

http://technet.microsoft.com/en-us/magazine/2007.11.powershell.
aspx

 f Additional information about input validation can be found by executing help
about_Functions_Advanced_Parameters

Piping data to functions
In addition to passing data to functions via parameters, functions can receive data directly
from another object or command via a pipe "|". Receiving values by piping helps improve
scripting by limiting the use of temporary variables, as well as more easily passing complex
object types or descriptors.

How to do it...
In this recipe, we will create a simple function that receives input from command line as
well as pipe. To do this, carry out the following steps:

1. Create a simple function that accepts a parameter:
Function Square-Num
{
 Param([float] $FirstNum)
 Write-Host ($FirstNum * $FirstNum)
}

2. Use the ValueFromPipeline parameter to enable the script to accept input
from the pipeline:
Function Square-Num
{
 Param([float]
 [Parameter(ValueFromPipeline = $true)]
 $FirstNum)
 Write-Host ($FirstNum * $FirstNum)
}

http://technet.microsoft.com/en-us/magazine/2007.11.powershell.aspx
http://technet.microsoft.com/en-us/magazine/2007.11.powershell.aspx

Chapter 1

31

3. Test the function using parameters and by passing data from the pipeline:

How it works...
The script in the first step itself is simple—it creates a variable named $FirstNum, squares
it by multiplying the number against itself, and returns the result. In the second step we
updated the parameter line with the following code:

 [Parameter(ValueFromPipeline=$true)]

This parameter option allows the function to assign a value to $FirstNum from the command
line, as well as from the pipeline. PowerShell will first look for the value on the command line
via name or location, and if it isn't listed, it will look for the value from the pipe.

There's more...
PowerShell will attempt to use all arguments provided to a function, and will report errors
if there are unknown arguments. For instance, if we try to provide values from the pipeline
and command line at the same time as shown in the following screenshot:

As you can see from the example, we attempt to pass both 8 and 7 to the Square-Num
function, the first via the pipe and the second via the command line. PowerShell reports an
error, and then provides an answer of 49, the result of 7 X 7.

Understanding PowerShell Scripting

32

Recording sessions with transcripts
When working in PowerShell doing various tasks, I find myself doing something that I then
want to document or turn into a function and I have to ask myself What did I just do?, Do I
know all of the variables I had previously set?, Do I know all the objects I am using?, What
kind of authentication am I using?, and so on.

The PowerShell console and ISE have some level of in-built history, but if you're doing large
tasks across multiple server environments, this history quickly becomes too small.

Enter PowerShell transcripts. Transcripts are a great way of recording everything you do in
a PowerShell session and saving it in a text file for later review.

How to do it...
Carry out the following steps:

1. Open the PowerShell console (not the ISE) and begin recording a transcript in the
default location by executing Start-Transcript.

2. Stop the recording by executing Stop-Transcript.

3. Begin recording a transcript into a different location by calling Start-Transcript
with the –Path switch:

How it works...
In the first step, we execute the command Start-Transcript, which automatically creates
transcript under the user's My Documents folder. Each transcript file is named with a unique
timestamp that ensures files don't overwrite or conflict with each other. We can stop the
recording by then executing Stop-Transcript.

In the third step, we tell PowerShell to save the transcript file to C:\temp\foo.txt. When
pointing transcripts to an existing file, PowerShell will attempt to append to the file. If the file
is read-only, using the –Force command will instruct PowerShell to attempt to change the
permissions on the file, and then append to it.

Chapter 1

33

There's more...
 f Transcript limitations: Session transcripts only work with the PowerShell console, and

not the PowerShell ISE. The ISE helps overcome some of this limitation by providing a
larger scroll-back area, but if you want to use transcripts, you have to use the console
application.

 f Fun with transcripts: Also, because transcripts capture anything typed or written to
the screen, you need to be careful what you run. For instance, if you run the following
commands, you will result in a recursive loop that has to be manually stopped:

See also
 f See the Creating and using PowerShell profiles recipe for information on how to

automatically start transcripts for your sessions.

Signing PowerShell scripts
When creating PowerShell scripts, modules, and profiles, it is considered best practice
to digitally sign them. Signing scripts performs the following two functions:

 f Ensures the script is from a trusted source

 f Ensures the script hasn't been altered since it was signed

Getting ready
To sign a PowerShell script, a code-signing certificate will be needed. Normally these
certificates will be provided by your enterprise Private Key Infrastructure (PKI), and the
PKI Administrator should be able to help you with the requesting process. Code-signing
certificates can also be purchased from third party Certificate Authorities (CA) which
can be helpful if your scripts are being distributed outside of your corporate environment.

Once received, the code-signing cert should be added to your Current User | Personal |
Certificates certificate store on your computer. Additionally, the root certificate from the
Certificate Authority should be added to the Trusted Publishers store for all computers
that are going to execute the signed scripts.

Understanding PowerShell Scripting

34

How to do it...
Carry out the following steps:

1. Create and test a PowerShell script.

2. Sign the script with Set-AuthenticodeSignature.

$cert = Get-ChildItem Cert:CurrentUser\My\ -CodeSigningCert
Set-AuthenticodeSignature C:\temp\ServerInfo.ps1 $cert

How it works...
The signing process is fairly simple, but also extremely powerful. The process starts by
searching the Current User certificate store for a certificate capable of code signing
and is placed into a $cert variable. Set-AuthenticodeSignature is then called to
sign the script with the certificate.

If there is more than one code signing certificate on your system, you need to select which
certificate to use. To achieve this, update the first line to include a where clause. For example:

$cert = Get-ChildItem Cert:CurrentUser\My\ -CodeSigningCert | Where-
Object Subject -eq 'CN=CorpInternal'

If you open the script in a text editor after it has been signed, you will notice several lines of
content appended to the end. These additional lines are the signature that PowerShell will
verify before running the script.

Chapter 1

35

Any change to the script (even adding or removing a space) will invalidate
the signature. Once the script has been signed, if you need to make
changes, you must repeat the signing process.

There's more...
If you don't have an available PKI to obtain a code-signing certificate, or your PKI Administrator
is hesitant to give you one, you can create a self-signed certificate for testing purposes. To
do this, you can use the following PowerShell script which is based on the script by Vishal
Agarwal at http://blogs.technet.com/b/vishalagarwal/archive/2009/08/22/
generating-a-certificate-self-signed-using-powershell-and-certenroll-
interfaces.aspx:

$name = new-object -com "X509Enrollment.CX500DistinguishedName.1"
$name.Encode("CN=TestCode", 0)

$key = new-object -com "X509Enrollment.CX509PrivateKey.1"
$key.ProviderName = "Microsoft RSA SChannel Cryptographic Provider"
$key.KeySpec = 1
$key.Length = 1024
$key.SecurityDescriptor = "D:PAI(A;;0xd01f01ff;;;SY)
(A;;0xd01f01ff;;;BA)(A;;0x80120089;;;NS)"
$key.MachineContext = 1
$key.Create()

$serverauthoid = new-object -com "X509Enrollment.CObjectId.1"
$serverauthoid.InitializeFromValue("1.3.6.1.5.5.7.3.3") # Code Signing
$ekuoids = new-object -com "X509Enrollment.CObjectIds.1"
$ekuoids.add($serverauthoid)
$ekuext = new-object -com "X509Enrollment.
CX509ExtensionEnhancedKeyUsage.1"
$ekuext.InitializeEncode($ekuoids)

$cert = new-object -com "X509Enrollment.
CX509CertificateRequestCertificate.1"
$cert.InitializeFromPrivateKey(2, $key, "")
$cert.Subject = $name
$cert.Issuer = $cert.Subject
$cert.NotBefore = get-date
$cert.NotAfter = $cert.NotBefore.AddDays(90)
$cert.X509Extensions.Add($ekuext)
$cert.Encode()

http://blogs.technet.com/b/vishalagarwal/archive/2009/08/22/generating-a-certificate-self-signed-using-powershell-and-certenroll-interfaces.aspx
http://blogs.technet.com/b/vishalagarwal/archive/2009/08/22/generating-a-certificate-self-signed-using-powershell-and-certenroll-interfaces.aspx
http://blogs.technet.com/b/vishalagarwal/archive/2009/08/22/generating-a-certificate-self-signed-using-powershell-and-certenroll-interfaces.aspx

Understanding PowerShell Scripting

36

$enrollment = new-object -com "X509Enrollment.CX509Enrollment.1"
$enrollment.InitializeFromRequest($cert)
$certdata = $enrollment.CreateRequest(0)
$enrollment.InstallResponse(2, $certdata, 0, "")

Executing this script will create the certificate and install it on the local computer as shown
in the following screenshot:

The self-signed certificate still needs to be added to your Trusted Root
Certification Authorities and Trusted Publishers store for the certificate
to be considered valid by client computers.

Sending e-mail
Integration with e-mail is a key capability for automating administration tasks. With e-mail,
you can run tasks that automatically let you know when they are complete, or e-mail users
when information is needed from them, or even send reports to administrators.

This recipe shows different methods of sending e-mail to users.

Getting ready
To send an e-mail using PowerShell, we will need a mail system capable of accepting SMTP
mail from your computer. This can be a Microsoft Exchange server, and IIS server, a Linux
host, or even a public mail service such as Google Mail. The method we use may change how
the e-mail appears to the end recipient and may cause the message to be flagged as spam.

Chapter 1

37

How to do it...
To send e-mail using the traditional .NET method:

1. Open PowerShell and load the following function:
function Send-SMTPmail($to, $from, $subject, $smtpServer, $body)
{
 $mailer = new-object Net.Mail.SMTPclient($smtpServer)
 $msg = new-object Net.Mail.MailMessage($from, $to, $subject,
$body)
 $msg.IsBodyHTML = $true
 $mailer.send($msg)
}

2. To send the mail message, call the following function:
Send-SMTPmail -to "admin@contoso.com" -from "mailer@contoso.com" `
-subject "test email" -smtpserver "mail.contoso.com" -body
"testing"

3. To send e-mail using the included PowerShell Cmdlet.

4. Use the Send-MailMessage command as shown:

Send-MailMessage -To admin@contoso.com -Subject "test email" `
-Body "this is a test" -SmtpServer mail.contoso.com `
-From mailer@contoso.com

How it works...
The first method shown uses a traditional .NET process to create and send the e-mail.
If you have experience programming in one of the .NET languages, this process may be
familiar. The function starts by creating a Net.Mail.SMTPclient object that allows it
to connect to the mail server. Then a Net.Mail.MailMessage object is created and
populated with the e-mail content. Lastly, the e-mail is sent to the server.

The second method uses a in-built PowerShell cmdlet named Send-MailMessage. This
method simplifies the mailing method into a single command while providing flexibility in
the mailing options and methods of connecting to mail servers.

Understanding PowerShell Scripting

38

There's more...
Most e-mail functions can be performed by the Send-MailMessage command.
More information can be found by executing help Send-MailMessage. The following
additional command switches allow the command to perform most mail functions needed:

 f Attachments

 f CC/BCC

 f SMTP authentication

 f Delivery notification

 f E-mail priority

 f SSL encryption

Sorting and filtering
One of the great features of PowerShell is its ability to sort and filter objects. This filtering can
be used to limit a larger result set and reporting only the information necessary.

This section will review several methods of filtering and sorting data.

How to do it...
1. To explore the filtering capabilities of PowerShell, we look at the running

processes on our computer. We then use the Where clause to filter the results.
Get-Process | Where-Object {$_.Name -eq "chrome"}
Get-Process | Where-Object Name -eq "chrome"
Get-Process | Where-Object Name -like "*hrom*"
Get-Process | Where-Object Name -ne "chrome"
Get-Process | Where-Object Handles -gt 1000

2. To view sorting in PowerShell, we again view the processes on our computer and
use Sort-Object to change the default sort order.
Get-Process | Sort-Object Handles
Get-Process | Sort-Object Handles -Descending
Get-Process | Sort-Object Handles, ID –Descending

3. To explore the select features of PowerShell, we use Select-String and
Select-Object clause:
Select-String -Path C:\Windows\WindowsUpdate.log -Pattern
"Installing updates"
Get-Process | Select-Object Name -Unique

Chapter 1

39

4. To view the grouping capabilities of PowerShell, we use Format-Table with
the –GroupBy command:

Get-Process | Format-Table -GroupBy ProcessName

How it works...
In the first section, we review various methods of filtering information using the Where clause:

 f The first method uses the PowerShell Where-Object clause format. The $_
identifier represents the object being passed through the pipe, so $_.Name refers
to the Name property of the object. The –eq is an equals parameter that instructs
Where-Object to compare the two values.

 f The second method performs the same task as the first but uses a parameter
format that is new in PowerShell 3.0. In this method the Where-Object comparison
no longer needs to use $_ to reference the object being passed, and we no longer
need the curly braces {}.

Even though the second method shown can often be easier to use
and easier to understand, it is important to know both methods. The
first method is still in use by PowerShell scripters, and there are some
situations that work better using this method.

 f The last three methods perform similar comparisons using different parameter.
The –like parameter allows for the use of the wildcard character * allowing for
less exact filtering. The –ne parameter means not equal and is the exact opposite
of the equals parameter. And the –gt parameter means greater than and
compares the attribute value to a known value.

The second section uses the Sort-Object command to sort and organize the object
attributes. In this section, we show sorting by the handles attribute in both ascending
(the default method), and descending format. Additionally, we see that multiple attributes
can be sorted at the same time.

The third section uses the Select-String and Select-Object commands to restrict
what is returned. The first method searches the WindowsUpdate.log for the string
Installing updates and returns the results. The second method takes the output
of Get-Process and filters it to only return a unique list of named processes.

The fourth section shows how to perform grouping based on an attribute. The Format-
Table command includes a property named –GroupBy that, instead of returning a single
table, will return multiple tables. In this case, for each unique ProcessName, a separate
table is returned.

Understanding PowerShell Scripting

40

Using formatting to export numbers
Numbers in their raw form are useful when you want the most exact calculation, but
can become messy when presenting them to users. Because of this PowerShell uses
standardized .NET formatting rules to convert and present numbers in different contexts.

In this recipe, we will take a number and use PowerShell to present it in different number
formats. This allows us to quickly see the differences between how PowerShell performs
number formatting.

How to do it...
Carry out the following steps:

1. Start with a simple PowerShell script to present numbers using different formats:
$jenny = 1206867.5309
Write-Host "Original:`t`t`t" $jenny
Write-Host "Whole Number:`t`t" ("{0:N0}" -f $jenny)
Write-Host "3 decimal places:`t" ("{0:N3}" -f $jenny)
Write-Host "Currency:`t`t`t" ("{0:C2}" -f $jenny)
Write-Host "Percentage:`t`t`t" ("{0:P2}" -f $jenny)
Write-Host "Scientific:`t`t`t" ("{0:E2}" -f $jenny)
Write-Host "Fixed Point:`t`t" ("{0:F5}" -f $jenny)
Write-Host "Decimal:`t`t`t" ("{0:D8}" -f [int]$jenny)
Write-Host "HEX:`t`t`t`t" ("{0:X0}" -f [int]$jenny)

2. Execute the script and review the results:

How it works...
Because PowerShell is based on the .NET framework, it automatically inherits its number
formatting capabilities. In this script, we are creating a variable named $jenny and assigning
a number to it. Then, several number formatting strings are created (the string in the curly
braces {}) and the formatting is applied to $jenny.

Chapter 1

41

In the code shown, we are using `t (backtick + letter t) to make the
output easier to read. This causes a tab to be added to the text, which
then aligns the output on the right.
The backtick character on most keyboards is the key to the left of the
number 1 and also contains the ~ character. In PowerShell this character
is occasionally referred to as an Esc character and is used to pass special
commands such as tabs and new lines.

The formatting strings are composed of three distinct elements, each with a unique role.
Inside the curly braces, the first zero (before the colon) refers to the first variable being used.
Since we are only using one variable, this number never changes. The letter after the colon
defines the format type of number, percentage, decimal, and so on. And the final number
defines how many decimal places to include in the results.

One area of special note is when we convert $jenny to a decimal or hexadecimal number.
You may have noticed the [int] attribute before the variable. This attribute explicitly casts
the variable as an integer prior to applying the formatting. This is necessary because decimal
and hexadecimal numbers only work with integers by default. Attempting to pass a complex
number like ours natively to these formatting commands will result in an error.

There's more...
In addition to the built in formatting strings shown previously, custom formatting strings
can also be created and applied.

Write-Host "Static Size:`t`t" ("{0:0000000000.00}" -f $jenny)
Write-Host "Literal String:`t`t" ("{0:000' Hello '000}" -f $jenny)
Write-Host "Phone Number:`t`t" ("{0:# (###) ### - ####}" -f
($jenny*10000))

The first custom string creates a number that is composed of 10 digits, a decimal point, and
two digits. If the number is not large enough to fill the formatting, zeros are prepended to it.

The second string creates a number with a literal string in the middle of it.

The third string multiplies the variable by 10,000 (to make it an 11 digit integer), and formats
it into a phone number. The number is returned complete with county and area codes.

Understanding PowerShell Scripting

42

See also
 f More information on formatting in .NET Framework 4.5 is documented on MSDN at

http://msdn.microsoft.com/en-us/library/26etazsy

Using formatting to export data views
One of the great things about PowerShell is that it gives you access to lots of information.
However, this plethora of information can be a downside of PowerShell if it is not the exact
information or type of information you are looking for. In previous chapters, we saw how to
filter and format data; in this chapter, we will review different methods to format data to
provide the information in a way that is usable to us.

How to do it...
Carry out the following steps:

1. Using Get-Process to list all running Chrome processes
Get-Process chrome

2. To list all available attributes for our processes, execute the following code:
Get-Process chrome | Select-Object *

3. To return a select list of attributes, update the following command:
Get-Process chrome | `
Select-Object Name, Handles, Threads, `
NonpagedSystemMemorySize, PagedMemorySize, `
VirtualMemorySize, WorkingSet, `
PrivilegedProcessorTime, UserProcessorTime, `
TotalProcessorTime

Note the use of the backtick character at the end of all but the
last line. This tells PowerShell to include the contents of the lines
as a single line. This allows us to more easily format the script for
readability.

4. Combine the values of different attributes to provide more usable information
Get-Process chrome | `
Select-Object Name, Handles, Threads, `
NonpagedSystemMemorySize, PagedMemorySize, `
VirtualMemorySize, WorkingSet, `
PrivilegedProcessorTime, UserProcessorTime, `

http://msdn.microsoft.com/en-us/library/26etazsy
http://msdn.microsoft.com/en-us/library/26etazsy

Chapter 1

43

TotalProcessorTime, `
@{Name="Total Memory";Expression=`
{$_.NonpagedSystemMemorySize + `
$_.PagedMemorySize + $_.VirtualMemorySize + `
$_.WorkingSet}}

5. Use formatting to return the values in a human readable format.

Get-Process chrome | `
Select-Object Name, Handles, Threads, `
NonpagedSystemMemorySize, PagedMemorySize, `
VirtualMemorySize, WorkingSet, `
PrivilegedProcessorTime, UserProcessorTime, `
TotalProcessorTime, `
@{Name="Total Memory (M)";Expression=`
{"{0:N2}" -f (($_.NonpagedSystemMemorySize + `
$_.PagedMemorySize + $_.VirtualMemorySize + `
$_.WorkingSet)/1MB)}}

How it works...
In the first step, we simply execute Get-Process to return all running processes named
chrome. This command returns basic process information such as the number of handles,
the amount of memory resources, and the amount of CPU resources used by each process.

In the second step, we do the same as before, but this time telling the command to return
all attributes for the processes. Dozens of attributes are returned, including details about
the executable, threads, debugging information, and even when the process was started.
Most importantly, this returns all available attributes for the process, thus allowing us to
determine which attributes we are interested in returning in future queries.

The third step identifies specific attributes to return from the running processes. Any
available process attribute can be included here in addition to or instead of the memory
related attributes shown here.

The fourth step uses an expression to create a calculated result. In this situation, we
create a calculated column named Total Memory and add several of the memory related
attributes together. Most mathematical functions such as multiplication and subtraction,
and most textual commands such as append or replace, can be used as well.

The final step adds numeric formatting to the calculated column to make it more readable
to the user. Two types of formatting are performed here:

 f The result is divided by 1 MB (or X / 1,048,576) to present the number
in megabytes instead of bytes

 f Formatting is applied to limit the resulting number to two decimal places

Understanding PowerShell Scripting

44

Using jobs
Many of the PowerShell scripts we will create will execute in a serial fashion, that is, A starts
before B which starts before C. This method of processing is simple to understand, easy to
create, and easy to troubleshoot. However, sometimes there are processes that make serial
execution difficult or undesirable. In that situation, we can look at using jobs as a method to
start a task, and then move it to the background so that we can begin the next task.

A common situation I ran into is needing to get information, or execute a command, on multiple
computers. If it is only a handful of systems, standard scripting works fine. However, if there are
dozens, or hundreds of systems, a single slow system can slow down the entire process.

Additionally, if one of the systems fails to respond, it has the possibility of breaking my entire
script, causing me to scramble through the logs to see where it failed and where to pick it
back up. Another benefit of using jobs is that each job has the ability to execute independent
of the rest of the jobs. This way, a job can fail, without breaking the rest of the jobs.

How to do it...
In this recipe, we will create a long-running process and compare the timing for serial
versus parallel processing. To do this, carry out the following steps:

1. Create a long-running process in serial:
Function that simulates a long-running process
$foo = 1..5
Function LongWrite
{
 Param($a)
 Start-Sleep 10
 $a
}
$foo | ForEach{ LongWrite $_ }

2. Create a long-running process using jobs:

Long running process using jobs
ForEach ($foo in 1..5)
{
 Start-Job -ScriptBlock {
 Start-Sleep 10
 $foo } -ArgumentList $foo -Name $foo
}
Wait-Job *
Receive-Job *
Remove-Job *

Chapter 1

45

How it works...
In the first step, we create an example long-running process that simply sleeps for 10 seconds
and returns its job number. The first script uses a loop to execute our LongWrite function in
a serial fashion five times. As expected, this script takes just over 50 seconds to complete.

The second step executes the same process five times, but this time using jobs. Instead
of calling a function, this time we are using Start-Job that will simultaneously create a
background job, start the job, and then return for more. Once all the jobs have been started,
we use Wait-Job * to wait for all running jobs to complete. Receive-Job retrieves the
output from the jobs, and Remove-Job removes the jobs from the scheduler.

Because of the setup and teardown process required for creating and managing jobs,
the process runs for more than the expected 10 seconds. In a test run, it took approximately
18 seconds total to create the jobs, run the jobs, wait for the jobs to complete, retrieve the
output from the jobs, and remove the jobs from the scheduler.

There's more...
 f Scaling up: While moving from 50 seconds to 18 seconds is impressive in itself

(decreasing it to 36 percent of the original run-time), larger jobs can give even
better results. By extending the command to run 50 times (instead of the original 5),
run-times can decrease to 18 percent of the serial method.

 f Working with remote resources: Jobs can be used both locally and remotely. A
common need for a server admin is to perform a task across multiple servers.
Sometimes, the servers respond quickly, sometimes they are slow to respond, and
sometimes they do not respond and the task times out. These slow or unresponsive
systems greatly increase the amount of time needed to complete your tasks. Parallel
processing allows these slow systems to respond when they are available without
impacting the overall performance.

By using jobs, the task can be launched among multiple servers simultaneously. This way, the
slower systems won't prompt other systems from processing. And, as shown in the example, a
success or failure report can be returned to the administrator.

Understanding PowerShell Scripting

46

See also
More information on using jobs in PowerShell can be found at:

 f http://blogs.technet.com/b/heyscriptingguy/archive/2010/03/16/
hey-scripting-guy-march-16-2010.aspx

 f http://blogs.technet.com/b/heyscriptingguy/archive/2012/12/31/
using-windows-powershell-jobs.aspx

 f http://blogs.technet.com/b/heyscriptingguy/archive/2012/02/02/
speed-up-excel-automation-with-powershell-jobs.aspx

Dealing with errors in PowerShell
When creating a script in any language, error handling is needed to ensure proper operations.
Error handling is useful when debugging scripts and ensuring scripts work properly, but they
can also present alternative methods of accomplishing tasks.

How to do it...
Carry out the following steps:

1. Create a simple function that uses no error handling
Function Multiply-Numbers
{
 Param($FirstNum, $SecNum)

 Write-Host ($FirstNum * $SecNum)
}

2. Test the function using various arguments:

http://blogs.technet.com/b/heyscriptingguy/archive/2010/03/16/hey-scripting-guy-march-16-2010.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2010/03/16/hey-scripting-guy-march-16-2010.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/12/31/using-windows-powershell-jobs.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/12/31/using-windows-powershell-jobs.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/02/02/speed-up-excel-automation-with-powershell-jobs.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/02/02/speed-up-excel-automation-with-powershell-jobs.aspx

Chapter 1

47

3. Update the function using a Try/Catch block:
Function Multiply-Numbers
{
 Param($FirstNum, $SecNum)
 Try
 {
 Write-Host ($FirstNum * $SecNum)
 }
 Catch
 {
 Write-Host "Error in function, present two numbers to
multiply"
 }
}

4. Test the Multiply-Numbers function using various arguments:

5. In the PowerShell console, execute a command to generate an error such as Get-
Item foo.

6. View the $Error variable to return the error code history.

Understanding PowerShell Scripting

48

How it works...
In the first step, we create a function that takes two numbers, multiplies them, and returns
the result. As we see in the second step, the function operates normally as long as two
numbers are presented, but if something other than a number is presented, then an
unfriendly error is returned.

In the third step, our updated script uses a Try/Catch block to find errors and return a more
friendly error. The Try block attempts to perform the multiplication, and if an error is returned
then processing exits. When the Try block fails for any reason, it then executes the Catch
block instead. In this case, we are returning a command specific error message, in other
scenarios we could initiate an alternative task or command that was based on the error.

The fifth and sixth steps generate an error in the PowerShell console, and then show the
$Error variable. The $Error variable is an in-built array that automatically captures and
stores errors as they happen. You can view the variable to report all errors listed, or you
can use indexing such as $Error[1] to return specific errors.

There's more...
 f Clearing error codes: By default, the $Error array will retain a number of error

codes. These errors are only removed from the array when it reaches its maximum
size, or when the user session is ended. It is possible to clear out the array before
doing a task, so that you can then review the $Error array after and know that
all the alerts are relevant.
$Error.Count

$Error.Clear()

$Error.Count

This example starts by returning the number of items in the array. Then $Error.
Clear() is called to empty the array. Lastly, the number of array items is returned
to confirm that it has been cleared.

 f $ErrorActionPreference: In many programming/scripting languages, there are
methods to change the default action when an error occurs. In VBScript, we had the
option "On Error Resume Next", which told the script to continue on as though no
error had occurred. In PowerShell, we have the $ErrorActionPreferece variable.
There are four settings for this variable:

 � Stop: Whenever an error occurs, the script or process is stopped. This is
the default action.

Chapter 1

49

 � Continue: When an error occurs, the error will be reported and the process
will continue.

 � SilentlyContinue: When an error occurs, PowerShell will attempt to suppress
the error and the process will continue. Not all errors will be suppressed.

 � Inquire: When an error occurs, PowerShell will prompt the operator to take
the correct action.

To set your preference, simply set the variable to the desired string value as shown in the
following code:

$ErrorActionPreference = "Stop"

Tuning PowerShell scripts for performance
In PowerShell, as with most things with computers, there is often more than one way to
accomplish a task. Therefore the question is not always how to accomplish a task, it is how
best to accomplish the task. Often times the answer comes down to how fast a certain
method performs.

In this recipe, we will look at different methods to retrieve the local groups on a member
server. The different methods will be benchmarked to determine the optimal method.

Getting ready
In this example, we will be listing the NT groups on the local computer. To do this we will be
querying the Win32_Group WMI class. This class however, returns all local computer groups,
as well all domain groups. If you have a domain environment with a large number of groups,
this process can be extensive.

How to do it...
Carry out the following steps:

1. Start by identifying different methods to list local groups on a computer:
Get-WmiObject -Class Win32_Group | Where-Object Domain -eq
$env:COMPUTERNAME
Get-WmiObject -Query "select * from Win32_Group where
Domain='$env:ComputerName'"

Understanding PowerShell Scripting

50

2. Benchmark the first task using Measure-Command:

3. Benchmark the second task using Measure-Command:

How it works...
Both of these commands perform the same task, querying WMI for local groups on our server.

 f The first command retrieves all groups from WMI (local and domain), then filters
based on the domain name attribute

 f The second command uses a query against WMI with a filter applied based on
the domain name, WMI then returns the group objects to PowerShell

In this situation, the first command took several minutes to complete, while the second
command took only 79 milliseconds. Both commands result in returning the same data,
so this suggests the second method is more ideal for my current situation.

Chapter 1

51

There's more...
Neither of these tasks is right nor wrong, they simply differ where the filtering process
took place. However, the first method may be preferred based on what else is being done.
For instance, if I was doing a large amount of work with groups and group membership,
both in the domain and local system, the first method may be preferred.

If the results of the first WMI command were saved to a variable prior to filtering, then
different filtering could be applied after. This one object could be filtered multiple times
to provide different information, instead of requiring multiple queries against WMI.

Creating and using Cmdlets
In the past, each system or application would have its own set of tools used to manage
it. Each tool had its own nomenclature, input, and output methods, and differing levels
of manageability. In PowerShell, this all changes with Cmdlets.

PowerShell creates a consistent run-time for toolsets to be created that function and
operate in a consistent manner. Input parsing, error presentation, and output formatting
are all managed via PowerShell. This means that the developer does not need to spend a
large amount of time filtering input and guessing at the output the administrator needs.

Cmdlets allow you to use the full power of custom C# code, without having to worry about
input or output functions. Cmdlets also utilize native .NET framework classes that allow
for managed code and working with objects.

This section shows how to use Visual Studio to create a custom Cmdlet and then utilize
the functions exposed in that Cmdlet. Specifically, we will be creating a Cmdlet that queries
the performance counters on a system and returns how long the system has been online.

Getting ready
Unlike functions and modules, to create a Cmdlet we require specialized tools. The first
item we need is Visual Studio. If you don't have Visual Studio currently, there are "express"
versions available that provide a free, but limited feature set. Alternatively, you can use the
command line if you are familiar with compiling .NET classes from command line.

Additionally, you will need to download and install the Windows SDK. The SDK provides
several system and .NET components necessary to create our Cmdlet.

Understanding PowerShell Scripting

52

How to do it...
Carry out the following steps:

1. Open Visual Studio and select to create a new Class Library project.

2. Import the references.

 � In Solution Explorer, right-click on References and then we select Add
Reference. On the Browse tab, browse to C:\Program Files (x86)\
Reference Assemblies\Microsoft\WindowsPowerShell\v3.0\
and select System.Management.Automation.dll.

Chapter 1

53

 � In Solution Explorer, we right-click on References and then we select Add
Reference. On the .NET tab, select System.Configuration.Install.

 � Solution Explorer should now look similar to the following screenshot:

3. Add Cmdlet code:
 [Cmdlet(VerbsCommon.Get, "Uptime")]
 public class GetUptimeCommand : Cmdlet
 {
 protected override void ProcessRecord()
 {
 using (var uptime = new PerformanceCounter("System",
"System Up Time"))
 {

Understanding PowerShell Scripting

54

 uptime.NextValue();
 WriteObject(TimeSpan.FromSeconds(uptime.
NextValue()));
 }
 }
 }

4. Add specific items for creating a Cmdlet:
 [RunInstaller(true)]
 public class GetUptimePSSnapIn : PSSnapIn
 {
 public GetUptimePSSnapIn()
 : base()
 {
 }
 public override string Name
 {
 get { return "GetUptimePSSnapIn"; }
 }
 public override string Vendor
 {
 get { return "Ed"; }
 }
 public override string Description
 {
 get { return "Returns the uptime of the system"; }
 }
 public override string VendorResource
 {
 get
 {
 return "GetUptimePSSnapIn,Ed";
 }
 }
 }

5. Compile the project.

 � On the Menu bar, select Build | Build GetUptime

Chapter 1

55

6. If the folder for the module doesn't exist yet, create the folder.
$modulePath = "$env:USERPROFILE\Documents\WindowsPowerShell\
Modules\GetUptime"
if(!(Test-Path $modulePath))
{
 New-Item -Path $modulePath -ItemType Directory
}

7. Copy GetUptime.dll from the output of Visual Studio to the new module folder.
$modulePath = "$env:USERPROFILE\Documents\WindowsPowerShell\
Modules\GetUptime"
Copy-Item -Path GetUptime.dll -Destination $modulePath

8. In a PowerShell console, execute Get-Module –ListAvailable to list all the
available modules:

9. Use the Cmdlet by calling the included commands:

Understanding PowerShell Scripting

56

How it works...
In the first step, we are creating a Visual Studio project for a class library. In this instance, I
used Visual C# due to both to personal preference and the fact that there is more information
available for creating Cmdlets with C#. Visual Basic could have been used as well.

I configured the Visual Studio session as a .NET framework 2.0 project.
This could have been 3.0, 3.5, or 4.0 instead.

In the second step, we add the necessary references to create and install our Cmdlet. The
first reference—System.Managment.Automation.dll—loads the necessary components
to tag this project as a Cmdlet. The second reference—System.Configuration.Install—
loads the components necessary to install the Cmdlet on a system.

In the third step, we add the code for our Cmdlet. The code section can be broken into four
sections: class attribute, class, ProcessRecord, and C# code.

 f The Cmdlet code begins with the line [Cmdlet(VerbsCommon.Get, "Uptime")],
which is an attribute that describes the class and what it does. In this case, it defines
the class as a PowerShell Cmdlet with a verb-noun pair of Get-Uptime.

 f The GetUptimeCommand class is a standard C# class and inherits from the Cmdlet
class.

 f The ProcessRecord is the section that is executed when the Cmdlet is called. There
is also an optional BeginProcessing and EndProcessing section that can be
added to provide a build-up and tear-down process. The build-up and tear-down can
be used to load information before processing and clear out variables and other
objects when done processing

 f The C# code is the basic code and can be almost anything that would normally be
included in a class project.

In the fourth step, we create the Cmdlet installer named GetUptimePSSnapin. The installer
is a fairly simple class, similar to the Cmdlet class, which inherits the PSSnapin class and
contains overrides that return information about the Cmdlet. In many scenarios, this section
can be copy/paste into new projects and simply updated to reflect the new Cmdlet name.

In the fifth step, we compile the project. It is important to review the output from Visual
Studio at this point to ensure no errors are reported. Any errors shown here may stop the
project from compiling correctly and stop it from functioning.

Next, we create a folder to hold the compiled Cmdlet. This process is the same as we
performed in the Creating and using modules recipe.

Lastly, we execute our commands to confirm the module loaded properly.

Chapter 1

57

There's more
Cmdlet naming convention: Cmdlets are traditionally named in a verb/noun pair. The verb
describes the action, such as get, set, or measure. The noun describes that object the action
is being performed on or against. It is best practice to build functions and Cmdlets using this
same naming convention for easy use.

For more information about which verbs are available and when they should be used, run
Get-Verb from within PowerShell.

See also
 f For more information on creating Cmdlets, see http://msdn.microsoft.com/

en-gb/library/windows/desktop/dd878294(v=vs.85).aspx

http://msdn.microsoft.com/en-gb/library/windows/desktop/dd878294(v=vs.85).aspx
http://msdn.microsoft.com/en-gb/library/windows/desktop/dd878294(v=vs.85).aspx

2
Managing Windows

Network Services with
PowerShell

In this chapter we will cover the following recipes:

 f Configuring static networking

 f Installing domain controllers

 f Configuring zones in DNS

 f Configuring DHCP scopes

 f Configuring DHCP server failover

 f Converting DHCP addresses to static

 f Building out a PKI environment

 f Creating AD users

 f Searching for and reporting on AD users

 f Finding expired computers in AD

 f Creating and e-mailing a superuser report

Managing Windows Network Services with PowerShell

60

Introduction
Setting up a new Active Directory environment can be either exciting or boring. If you have
rarely built out new domain and networking environments, the process is probably new and
very exciting. However, if you are constantly building out new environments for test labs or
other business needs, the process can be fairly long and drawn out. Instead, you are mostly
interested in automating the process to require minimal user input and maintain consistency
between builds.

This chapter covers the installation and configuration of Active Directory, DNS, DHCP, and
Certificate Services. This chapter should cover everything necessary to prepare an environment
as a fully functioning Active Directory domain for use in labs or new domain environments.

Configuring static networking
TCP/IP is the primary technology used for communicating between computers today. When
first building out an environment, one of the first items to accomplish is to define and apply
an IP addressing scheme. Once the addressing scheme is defined, we can create static
addresses for our first servers. Later, we will configure DHCP in case static addressing is
not desired for all of the systems in your environment.

Getting ready
From the following diagram we can see that we have already defined our addressing scheme
using both IPv4 and IPv6. At the start of our network, we have a router acting as a default
gateway, and we will configure two servers in preparation for becoming domain controllers.
The default gateway router is already statically assigned with IPv4 and IPv6 addresses:

Chapter 2

61

All three of these components are connected to a common Ethernet segment to
communicate with each other.

Before defining any networking configuration, we should confirm that
our addresses do not conflict with other networks in our environment.
Even when building out isolated environments, it is best to use
different network addresses in case of accidental conflict with
production environments.

How to do it...
Carry out the following steps to configure static networking:

1. Find the interface to set by executing Get-NetIPInterface:

Managing Windows Network Services with PowerShell

62

2. Set the IP information using New-NetIPAddress:
New-NetIPAddress -AddressFamily IPv4 -IPAddress 10.10.10.10
-PrefixLength 24 -InterfaceAlias Ethernet

3. Set DNS Servers using Set-DnsClientServerAddress:
Set-DnsClientServerAddress -InterfaceAlias Ethernet
-ServerAddresses "10.10.10.10","10.10.10.11"

4. Set the default route using New-NetRoute:

New-NetRoute -DestinationPrefix "0.0.0.0/0" -NextHop "10.10.10.1"
-InterfaceAlias Ethernet

Chapter 2

63

How it works...
In the first step we list out the network adapters available on the server. Windows Servers often
include several network adapters of different types, and depending on the features installed,
there can be several more. By executing Get-NetworkIPInterface, we list the interface
names and indexes that we will use to identify the specific interface we desire to configure.

The second and third steps use New-NetIPAddress and Set-DnsClientServerAddress to
configure the identified interface with IPv4 address and DNS targets for the specified interface.

The last step uses New-NetRoute to define a network route. The –DestinationPrefix
0.0.0.0/0 parameter identifies this route as the default route, or default gateway. The –
NextHop 10.10.10.1 parameter is the router address to forward traffic into if another
route does not take precedence.

The following screenshot shows the IPv4 address properties after finalizing configuration
via PowerShell:

Managing Windows Network Services with PowerShell

64

There's more...
There are a few more features provided by PowerShell. They are as follows:

 f IPv6 addressing: In addition to configuring IPv4, PowerShell can also configure IPv6
addresses. The process for configuring static IPv6 addressing is exactly the same as
IPv4, the only change is the addresses themselves.

Following are examples of configuring IPv6 on the same host. Note that both IPv4 and
IPv6 addressing can coexist on the same server without issue:

New-NetIPAddress -AddressFamily IPv6 -IPAddress 2001:db8:1::10 `
-PrefixLength 64 -InterfaceAlias Ethernet
New-NetRoute -DestinationPrefix ::/0 -NextHop 2001:db8:1::1 `
-InterfaceAlias Ethernet
Set-DnsClientServerAddress -InterfaceAlias Ethernet `
-ServerAddresses "2001:db8:1::10","2001:db8:1::11"

Chapter 2

65

 f Additional IP addresses: By using the New-NetIPAddress function, an interface
can be configured with multiple IP addresses simultaneously. This configuration is
often used for clustering or load balancing within Windows. Following is an example
of configuring an additional address:
New-NetIPAddress -AddressFamily IPv4 -IPAddress 10.10.10.250
-PrefixLength 24 -InterfaceAlias Ethernet

Managing Windows Network Services with PowerShell

66

 f Additional routes: Windows has the ability to route network packets to more
locations than the default gateway. Say for instance, there are two routers on your
network: the default gateway and a second gateway. The second gateway is used
to access the 10.10.20.0/24 network, and the Windows server needs to be
configured to route to it:

By executing the New-NetRoute command again, with the -DestinationPrefix
and -NextHop addresses changed appropriately, we add a specific route to the
server:
New-NetRoute -DestinationPrefix "10.10.20.0/24" -NextHop
"10.10.10.254" -InterfaceAlias Ethernet

In some cases, such as a dedicated management network, the
secondary network may be connected to a different network interface.
If that is the situation, change the –InterfaceAlias parameter to
target the second interface.

Chapter 2

67

The full list of routes can be viewed by running Get-NetRoute. This will return all
IPv4, IPv6, default, and static routes that are defined on the system:

Installing domain controllers
Once the TCP/IP networking is set up and working, the next step to tackle is installing the
domain controllers. In a Windows Active Directory domain, the domain controllers can be
viewed as the core of the network. Domain controllers provide user authentication, group
policy information, time synchronization, and access to Active Directory objects. Additionally,
domain controllers often provide several network services such as DNS, DHCP, certificate
services, and more.

This recipe will set up and install the first domain controller, creating a new domain in a
new forest. Once completed, the second domain controller will be remotely installed and
promoted. Additionally, we will install DNS on both domain controllers to provide name
resolution services.

Managing Windows Network Services with PowerShell

68

Getting ready
This recipe assumes a server and networking configuration setup similar to the prior recipe. We
will be working with newly installed servers without any additional roles or software installed. To
complete these tasks, you will need to log on to the server as the local administrator.

How to do it...
Carry out the following steps to install the domain controller:

1. As an administrator, open a PowerShell.

2. Identify the Windows Features to install:
Get-WindowsFeature | Where-Object Name -like *domain*
Get-WindowsFeature | Where-Object Name -like *dns*

3. Install the necessary features:
Install-WindowsFeature AD-Domain-Services, DNS –
IncludeManagementTools

4. Configure the domain:

$SMPass = ConvertTo-SecureString 'P@$$w0rd11' –AsPlainText -Force
Install-ADDSForest -DomainName corp.contoso.com –
SafeModeAdministratorPassword $SMPass –Confirm:$false

How it works...
The first step executes the Get-WindowsFeature Cmdlet to list the features necessary
to install domain services and DNS. If you are unsure of the exact names of the features to
install, this is a great method to search for the feature names using wildcards. The second
step uses Install-WindowsFeature to install the identified features, any dependencies,
and any applicable management tools.

The third step calls Install-ADDSForest to create a new domain/forest named corp.
contoso.com. Before promoting the server to a domain controller, we create a variable named
$SMPass, which will hold a secure string that can be used as a password when promoting the
server. This secure string is then passed as -SafeModeAdministratorPassword to the
server, allowing access to the server if the domain services fail to start in the future:

Chapter 2

69

You will see a notice similar to the preceding screenshot when installation is finished.
The system will automatically restart and the domain controller install will be complete.

There's more...
The following lists what more can be done with the domain controller:

 f Joining a computer to domain: Once the domain has been created, computers
can be joined to the domain manually or via automation. The following example
shows how to use PowerShell to join the CorpDC2 computer to the corp.contoso.
com domain.
$secString = ConvertTo-SecureString 'P@$$w0rd11' -AsPlainText
-Force
$myCred = New-Object -TypeName PSCredential -ArgumentList "corp\
administrator", $secString
Add-Computer -DomainName "corp.contoso.com" -Credential $myCred –
NewName "CORPDC2" –Restart

Similar to creating the domain, first a $secString variable is created to hold a
secure copy of the password that will be used to join the computer to the domain.
Then a $myCred variable is created to convert the username/password combination
into a PSCrededntial object that will be used to join the computer to the domain.
Lastly, the Add-Computer Cmdlet is called to join the computer to the domain and
simultaneously, rename the system. When the system reboots, it will be connected
to the domain.

 f Push install of domain controller: It is normally considered best practice to have
at least two domain controllers (DCs) for each domain. By having two DCs, one can
be taken offline for maintenance, patching, or as the result of an unplanned outage,
without impacting the overall domain services.

Managing Windows Network Services with PowerShell

70

Once a computer has been joined to the domain, promoting the system to a DC
can be performed remotely using PowerShell:
Install-WindowsFeature –Name AD-Domain-Services, DNS
-IncludeManagementTools –ComputerName CORPDC2
Invoke-Command –ComputerName CORPDC2 –ScriptBlock {
$secPass = ConvertTo-SecureString 'P@$$w0rd11' -AsPlainText –Force
$myCred = New-Object -TypeName PSCredential -ArgumentList "corp\
administrator", $secPass
$SMPass = ConvertTo-SecureString 'P@$$w0rd11' –AsPlainText –Force
Install-ADDSDomainController -DomainName corp.contoso.com –
SafeModeAdministratorPassword $SMPass -Credential $myCred –
Confirm:$false
}

First, the Domain and DNS services and appropriate management tools are installed
on the remote computer. Then, using the Invoke-Command Cmdlet, the commands
are executed remotely to promote the server to a domain controller and reboot.

To create a new domain/forest, we used the Install-ADDSForest
command. To promote a computer into an existing domain/forest, we
use the Install-ADDSDomainController command.

Configuring zones in DNS
Windows domains rely heavily on DNS for name resolution and for finding appropriate
resources. DNS is composed primarily of zones, each of which contains records. These
zones and records provide name to address and address to name resolution for clients.

Here we will install and configure the DNS service and configure zones for servicing clients.

Getting ready
This recipe assumes a server and networking configuration similar to what is created in
the first recipe. For DNS services to operate, the server does not need to be a member
of an Active Directory domain, and in some scenarios, such as internet facing systems,
Active Directory membership is discouraged.

Chapter 2

71

We will be configuring our DNS servers with the following zones:

Zone Type
corp.contoso.com AD integrated
10.10.10.in-addr.
arpa

AD integrated reverse lookup

20.168.192.in-add.
arpa

AD integrated reverse lookup

contoso.com Standard primary
fabrkam.com Conditional forwarder to

192.168.99.1
corp.adatum.com Secondary zone referencing

192.168.1.1

How to do it...
Carry out the following steps to configure zones in DNS:

1. Identify features to install:
Get-WindowsFeature | Where-Object Name -like *dns*

2. Install DNS feature and tools (if not already installed):
Install-WindowsFeature DNS -IncludeManagementTools –
IncludeAllSubFeature

3. Create a reverse lookup zone:
Add-DnsServerPrimaryZone –Name 10.10.10.in-addr.arpa –
ReplicationScope Forest
Add-DnsServerPrimaryZone –Name 20.168.192.in-addr.arpa –
ReplicationScope Forest

4. Create a primary zone and add static records:
Add-DnsServerPrimaryZone –Name contoso.com –ZoneFile contoso.com.
dns
Add-DnsServerResourceRecordA –ZoneName contoso.com –Name www –
IPv4Address 192.168.20.54 –CreatePtr

5. Create a conditional forwarder:
Add-DnsServerConditionalForwarderZone -Name fabrikam.com
-MasterServers 192.168.99.1

6. Create a secondary zone:

Add-DnsServerSecondaryZone -Name corp.adatum.com -ZoneFile corp.
adatum.com.dns -MasterServers 192.168.1.1

Managing Windows Network Services with PowerShell

72

How it works...
The first two steps may have already been completed if your DNS server coexists on the
domain controller. When viewing the output of Get-WindowsFeature in the first step, if
Install State for the DNS features equals Installed, the roles are already installed. If
the roles are already installed, you can still attempt to reinstall them without causing issues.

The third step creates two AD-integrated reverse lookup zones named 10.10.10.in-addr.
arpa and 20.168.192.in-addr.arpa. These zones are used for IP-to-Name resolution
for servers in the 10.10.10.0/24 (internal) and 192.168.20.0/24 (DMZ or untrusted)
subnets. These reverse lookup zones are not automatically created when installing DNS or
Active Directory and it is the administrator's responsibility to create it.

It is considered a best practice to have a reverse lookup zone for all
networks in your organization. This eases many operational tasks
and some network tools fail to work properly if the reverse lookup
zones don't exist.

The fourth step creates a standard primary zone named contoso.com. This zone is different
from the corp.contoso.com zone that was automatically created during creation of the
domain. This new zone will be used to host records used in an untrusted or DMZ environment.
In this example we created a static record www.contoso.com, configured it with a target IP
address, and configured the reverse lookup record as well.

The steps shown here are an example of creating a primary zone. Additional
steps may be needed to fully secure a DNS server that is accessible by the
outside world.
Additionally, standard primary zones cannot be AD-integrated and do
not automatically replicate to other DNS servers. To replicate a standard
primary zone, a secondary zone must be created on the target DNS server
and authorized to replicate.

The fifth step creates a conditional forwarder named fabrikam.com. A conditional forwarder
simply identifies the domain request and forwards it to the appropriate master servers.

Chapter 2

73

The sixth step creates a secondary zone named corp.adatum.com. Unlike primary zones,
secondary zones are read-only, and they only hold a copy of the zone data as pulled from
the master server. To add or update records in this zone, the changes must be made at the
master server, and then replicated to the secondary.

Unlike primary zones and conditional forwarders, secondary zones
cannot be AD-integrated and do not automatically replicate to other
DNS servers in the domain. This means that the secondary zones
must be configured on each DNS server that will host the zone.

Managing Windows Network Services with PowerShell

74

There's more...
The following lists the additional features of zones in DNS:

 f Listing all zones: A full list of DNS zones on a server can be returned by executing
the Get-DnsServerZone function:

 f Updating DNS records: When updating static records there are two options: delete
and recreate, and update. The following is a simple function that gets a current
resource record from DNS, updates it, and commits it back to DNS:

Function Update-DNSServerResourceRecord{
 param(
 [string]$zoneName = $(throw "DNS zone name required")
 ,[string]$recordName = $(throw "DNS record name required")
 ,[string]$newIPv4Address = $(throw "New IPv4Address required")
)
 # Get the current record from DNS
 $oldRecord = Get-DnsServerResourceRecord -ZoneName $zoneName
-Name $recordName
 Write-Host "Original Value: " $oldRecord.RecordData.
IPv4Address

 # Clone the record and update the new IP address
 $newRecord=$oldRecord.Clone()
 $newRecord.RecordData.IPv4Address = [ipaddress]$newIPv4Address

Chapter 2

75

 # Commit the changed record
 Set-DnsServerResourceRecord -ZoneName $zoneName
-OldInputObject $oldRecord -NewInputObject $newRecord
 Write-Host "New Value: " (Get-DnsServerResourceRecord
-ZoneName $zoneName -Name $recordName).RecordData.IPv4Address
}

Configuring DHCP scopes
As an alternative to statically assigned TCP/IP addresses, Windows supports the Dynamic Host
Configuration Protocol (DHCP). This service allows for provisioning of IP addresses, default
gateways, DNS information, and even more advanced information such as boot servers.

This recipe will set up the basic DHCP features on a domain controller and configure an
initial DHCP scope.

Getting ready
This recipe assumes a server, networking, and domain configuration similar to what is
created in the Installing domain controllers recipe.

How to do it...
Carry out the following steps to configure DHCP scopes:

1. Install DHCP and management tools:
Get-WindowsFeature | Where-Object Name -like *dhcp*
Install-WindowsFeature DHCP -IncludeManagementTools

2. Create a DHCP scope
Add-DhcpServerv4Scope -Name "Corpnet" -StartRange 10.10.10.100
-EndRange 10.10.10.200 -SubnetMask 255.255.255.0

3. Set DHCP options
Set-DhcpServerv4OptionValue -DnsDomain corp.contoso.com -DnsServer
10.10.10.10 -Router 10.10.10.1

4. Activate DHCP

Add-DhcpServerInDC -DnsName corpdc1.corp.contoso.com

Managing Windows Network Services with PowerShell

76

How it works...
The first step uses Install-WindowsFeature to install the DHCP feature and
management tools on the currently logged on system. Once installed, the second step
calls Add-DHCPServerv4Scope to create a DHCP scope named Corpnet, providing
dynamic IPs on the 10.10.10.0/24 subnet.

The third step uses Set-DhcpServerv4OptionValue to set up common DHCP
options, such as the DNS servers and default gateway address. This command can
include other common options such as the DNS domain name, WinsServer, and Wpad
location. Additionally, any extended DHCP option ID can be configured using the Set-
DhcpServerv4OptionValue command.

The last step calls Add-DHCPServerInDC to activate the DHCP service on the computer in
Active Directory. This authorizes the DHCP service to provide addresses to clients in the domain.

There's more...
The following lists the additional features of DHCP:

 f Adding DHCP reservations: In addition to creating and activating DHCP scopes,
we can also create reservations in DHCP. A reservation matches a network adapter's
MAC address to a specific IP address. It is similar to using a static address, except
the static mapping is maintained on the DHCP server:
Add-dhcpserverv4reservation –scopeid 10.10.10.0 –ipaddress
10.10.10.102 –name test2 –description "Test server" –clientid 12-
34-56-78-90-12
Get-dhcpserverv4reservation –scopeid 10.10.10.0

 f Adding DHCP exclusions: Additionally, we can create DHCP exclusions using
PowerShell. An exclusion is an address, or range of addresses that the DHCP server
won't provide to clients. Exclusions are often used when individual IP addresses
within the scope have been statically assigned:

Add-DhcpServerv4ExclusionRange –ScopeId 10.10.10.0 –StartRange
10.10.10.110 –EndRange 10.10.10.111
Get-DhcpServerv4ExclusionRange

Chapter 2

77

Configuring DHCP server failover
Prior to Server 2012, there were limited methods of ensuring DHCP was redundant and
always available to service requests. One of the most common methods was to split DHCP
scopes between multiple servers, with each server providing a subset of the scope. If one
system was unavailable, the other system was still able to provide a subset of addresses.
However, this caused problems because if a DHCP server was unavailable, there may not be
enough addresses available to service all of your clients. Other redundancy options involved
clustering or other expensive technologies that were difficult to manage.

In Server 2012 DHCP server failover is a built-in feature. This feature allows servers to share
a common DHCP database to provide leases and provide redundancy. To use DHCP failover,
the DHCP feature just needs to be installed and configured across servers. This recipe will
walk through the configuration of DHCP failover.

Getting ready
This recipe assumes a server, networking, and domain configuration similar to what is
created in the Installing domain controllers recipe. A minimum of two servers will be needed
to configure as DHCP servers. Additionally, it assumes one of the domain controllers already
has DHCP installed and configured.

How to do it...
Carry out the following steps to configure DHCP server failover:

1. Install DHCP on the second server either locally or remotely:
Install-WindowsFeature dhcp -IncludeAllSubFeature -ComputerName
corpdc2

2. Authorize DHCP on the second server:
Add-DhcpServerInDC -DnsName corpdc2.corp.contoso.com

3. Configure DHCP failover:

Add-DhcpServerv4Failover -ComputerName corpdc1 -PartnerServer
corpdc2 -Name Corpnet-Failover -ScopeId 10.10.10.0 -SharedSecret
'Pa$$w0rd!!'

Managing Windows Network Services with PowerShell

78

How it works...
The first and second steps are responsible for installing and authorizing DHCP on CorpDC2.
This is the same process used in the previous recipe to install DHCP on the first domain
controller. Once installed, we use Add-DhcpServerInDC to authorize the server to act as
a DHCP server.

The third step calls Add-DHCPServerv4Failover to configure DHCP failover across
CorpDC1 and CorpDC2. This command identifies the scope 10.10.10.0 for failover
and configures a shared key for authenticating communication between the servers.

At this point the failover configuration is complete and both DHCP servers will begin providing
addresses. If you open the DHCP administration console, you will see that both domain
controllers have DHCP installed and servicing clients. Additionally, you will see that both
servers have the same client lease information, making the solution truly redundant:

Converting DHCP addresses to static
While DHCP is an easy way to manage network addresses, especially, in dynamic environments,
it does have its drawbacks. If something happens on your physical network or to your DHCP
server, clients may not be able to receive or renew their addresses. And due to the dynamic
nature of DHCP, addresses may change, causing issues with firewalls and DNS records.

This is normally fine for desktop environments, but in server environments, we want to
minimize any possibility for an outage. As such, at some point you may want to convert
your dynamically addressed hosts to use static addresses.

Chapter 2

79

Getting ready
This recipe assumes a basic server configuration with a single interface using a single
IP address via DHCP. The script works best when run locally on the target server.

How to do it...
Log on to the target server interactively and execute the following script:

Identify all adapters that recieved an address via DHCP
$adapters = Get-WmiObject -Class Win32_NetworkAdapterConfiguration |
Where-Object {($_.IPAddress) -and $_.DHCPEnabled -eq 'True' }

Iterate through each adapter
foreach($adapter in $adapters)
{
 # Get current adapter and IP information
 $adapIndex = $adapter.InterfaceIndex
 $ipAddress = $adapter.IPAddress[0]
 $subnetMask = $adapter.IPSubnet[0]
 $defaultGateway = $adapter.DefaultIPGateway[0]
 $prefix = (Get-NetIPAddress -InterfaceIndex $adapIndex –
AddressFamily IPv4).PrefixLength
 $dnsServers = $adapter.DNSServerSearchOrder
 [ipaddress]$netAddr = ([ipaddress]$ipAddress).Address -band
([ipaddress]$subnetMask).Address

 # Identify the DHCP server
 $dhcpServer = $adapter.DHCPServer
 $dhcpName = ([System.Net.DNS]::GetHostEntry($dhcpServer)).HostName

 # Add an exclusion to DHCP for the current IP address
 Invoke-Command -ComputerName $dhcpName -ScriptBlock{
 Add-DhcpServerv4ExclusionRange –ScopeId $args[0] –StartRange
$args[1] –EndRange $args[1]
 } -ArgumentList $netAddr.IPAddressToString, $ipAddress

 # Release the DHCP address lease
 Remove-NetIPAddress -InterfaceIndex $adapIndex -Confirm:$false

 # Statically assign the IP and DNS information
 New-NetIPAddress -InterfaceIndex $adapIndex -AddressFamily
IPv4 -IPAddress $ipAddress -PrefixLength $prefix -DefaultGateway
$defaultGateway
 Set-DnsClientServerAddress -InterfaceIndex $adapIndex
-ServerAddresses $dnsServers
}

Managing Windows Network Services with PowerShell

80

How it works...
The first part of the script queries WMI for all network adapters that both have an active
IP address, and are using DHCP. The results from the WMI query are placed into a variable
named $adapters and are iterated in a for each loop, where the adapter and IP
information is collected.

A network adapter can hold multiple IP addresses, but this script is
only capable of handling the first IPv4 address of each adapter.

Once all of the network information is collected, Invoke-Command is used to connect to the
DHCP server that issued the address and creates an exclusion. The exclusion record's start
and end address is the IP address assigned to the client. This prevents the IP address from
being reused by another host at a later time.

Lastly, the adapter is changed to a static address. Remove-NetIPAddress is used to release
the DHCP address from the interface. Once cleared, New-NetIPAddress is used to statically
configure the interface with the same IPv4 address, subnet, and gateway that was previously
held. Finally, Set-DnsClientServerAddress assigns the DNS server addresses.

There's more...
This script can be run against a system remotely using a PSSession, with the exception of
creating the DHCP exclusion. When using a PSSession to a remote computer, you cannot
create another session to a third computer. As such, the script will run and successfully set
the local interfaces to static, but it won't exclude DHCP from providing those addresses to
another client.

Building out a PKI environment
Windows Active Directory domains are a great way to authenticate users and computers.
Using a central store of accounts and passwords, requests can be easily authenticated,
and accounts can be quickly added, updated, or removed as needed. While this is a great
method for authentication within the domain, it does not work as well outside of the domain.
Situations, where the domain controller may not be accessible, where the authority of the
domain controller is in question, or when accessing resources outside of a domain, call for
alternative authentication methods.

Certificates allow for creation of an authentication infrastructure by using a series of
trusts. Instead of joining a domain, and thereby trusting the domain controllers, you trust a
Certificate Authority (CA). The CA is responsible for handing out certificates that authenticate
the user or computer. By trusting the CA, you implicitly trust the certificates it produces.

Chapter 2

81

Windows server has the ability to operate both as an Active Directory domain and a Certificate
Authority. This provides the basis for several technologies in a domain such as secure web
servers, IPSec, and DirectAccess. The following will cover the necessary steps to install and
configure a Private Key Infrastructure (PKI) environment.

Getting ready
This particular recipe installs and configures an enterprise root CA, which requires a domain
environment to operate. If you do not have a domain environment, this can still be used, but
the CAType needs to be changed to support a standalone system.

How to do it...
Carry out the following steps to build a PKI environment:

1. Install certificate server:
Get-WindowsFeature | Where-Object Name -Like *cert*
Install-WindowsFeature AD-Certificate -IncludeManagementTools
-IncludeAllSubFeature

2. Configure the server as an enterprise CA:
Install-AdcsCertificationAuthority -CACommonName corp.contoso.com
-CAType EnterpriseRootCA -Confirm:$false

3. Install root certificate to trusted root certification authorities store:
Certutil –pulse

4. Request machine certificate from CA:

Set-CertificateAutoEnrollmentPolicy -PolicyState Enabled -Context
Machine -EnableTemplateCheck

How it works...
The first two steps install and configure the certificate services on the target server. The
certificate server is configured as an enterprise root CA named corp.contoso.com, with
the default configuration settings.

The third step uses the Certutil.exe utility to download and install the root CA to the
trusted root certification authorities store. Lastly, a machine certificate is requested using
the default autoenrollment policy.

Managing Windows Network Services with PowerShell

82

There are four types of Certificate Authorities supported by Windows server:

 f Enterprise root CA

 f Enterprise subordinate CA

 f Standalone root CA

 f Standalone subordinate CA

The two enterprise CA types are designed to integrate with Active Directory domains and
provide more flexibility in AD environments. Standalone CA types operate similar to third party
CAs and don't integrate with AD. Additionally, the subordinate CA types are child authorities
that have been delegated permission from the root authorities to create certificates.

There's more…
Once the PKI environment is implemented, the next step is to create a group policy to have
clients autoenroll. Unfortunately, there is not a built-in function to edit the group policy objects
we need, so we have to perform the task manually. Following are the steps necessary to set
up the autoenroll GPO:

1. Open Server Manager and select Tools | Group Policy Management:

2. Browse to Group Policy Management | Forest <forestname> | Domains |
<domainname>.

Chapter 2

83

3. Right-click on Default Domain Policy and select Edit:

4. In the Group Policy Management Editor, browse to Default Domain Policy |
Computer Configuration | Policies | Windows Settings | Security Settings | Public
Key Policies:

Managing Windows Network Services with PowerShell

84

5. Right-click on Certificate Services Client – Auto-Enrollment and select Properties.

6. In the Enrollment Policy Configuration window, set the following fields:

 � Configuration Model: Enabled

 � Check the Renew expired certificates, update pending certificates, and
remove revoked certificates checkbox

 � Check the Update certificates that use certificate templates checkbox

7. Click on OK and close the Group Policy Management Editor.

Creating AD users
When working in a test or lab environment, it is useful to have a number of test accounts to
use. These accounts can have different access permissions and simulate different types of
users doing specific tasks. These AD users are normally made up of simple accounts with a
common password.

Additionally, when setting up a new production environment, it may be necessary to populate
users into AD. These usernames and e-mail addresses are predefined and the passwords
must be unique.

In this recipe we will use a PowerShell script to create both types of users.

Chapter 2

85

Getting ready
To use this recipe properly, you need an AD environment with credentials capable of creating
user accounts. Additionally, if you want to create specific users, you will need a CSV file with
headers of LastName,FirstName as shown in the following screenshot that contains the
users to create:

How to do it...
Carry out the following steps to create AD users:

1. To create a single Active Directory user account, use the following command:
New-ADUser -Name JSmith

2. To create multiple Active Directory user accounts, we use the following functions:

Function Create-Users{
 param($fileName, $emailDomain, $userPass, $numAccounts=10)
 if($fileName -eq $null){
 [array]$users = $null
 for($i=0; $i -lt $numAccounts; $i++){
 $users += [PSCustomObject]@{
 FirstName = 'Random'
 LastName = 'User' + $i
 }
 }
 } else {
 $users = Import-Csv -Path $fileName
 }

Managing Windows Network Services with PowerShell

86

 ForEach($user in $users)
 {
 $password = ''
 if($userPass)
 {
 $password = $userPass
 } else {
 $password = Get-RandomPass
 }
 Create-User -firstName $user.FirstName `
 -lastName $user.LastName -emailDomain $emailDomain `
 -password $password
 }
}

Function Create-User
{
 param($firstName, $lastName, $emailDomain, $password)
 $accountName = '{0}.{1}' -f $firstName, $lastName
 $emailAddr = '{0}@{1}' -f $accountName, $emailDomain
 $securePass = ConvertTo-SecureString $password -AsPlainText
-Force

 New-ADUser -Name $accountName -AccountPassword $securePass `
 -ChangePasswordAtLogon $true -EmailAddress $emailAddr `
 -Displayname "$FirstName $Lastname" -GivenName $Firstname `
 -Surname $LastName -Enabled $true

 Write-Host "$LastName,$FirstName,$AccountName,$emailAddr,$pass
word"
}

function Get-RandomPass{
 $newPass = ''
 1..10 | ForEach-Object {
 $newPass += [char](Get-Random -Minimum 48 -Maximum 122)
 }
 return $newPass
}

Chapter 2

87

How it works...
This script is composed of three functions: Create-Users, Create-User, and Get-
RandomPass. The first function starts by checking if a value was passed for the $fileName
parameter. If no value was included, it creates an array named $Users and populates it with
the number of test accounts defined by $numAccounts. If $fileName exists, it imports the
target file as a CSV and populates the $Users array.

The loading of the CSV file has no error checking included, so it is
important to review the contents of the file before starting. Specifically,
confirm that the first line has the column headers as expected.

Once the user list has been determined, each user account is cycled through. Additional
account properties, such as the e-mail address and username, are populated based on user
information, and if a password was not predefined, a random password is generated. Once
the password is defined, then Create-User is called.

The Create-User function defines the $accountName and $emailAddr of the user
account by combining various attributes. It then converts the password into a secure string
that can be used when creating the user account. Lastly, New-ADUser is called to create the
user account in Active Directory with the defined user properties, and the user information is
echoed to the console.

The third function named Get-RandomPass uses a loop to create a 10 random characters,
which are combined and returned as a random password. The function begins by creating
a $newPass variable as an empty string. The numbers 1 through 10 are passed into a
ForEach-Object loop that chooses a random character and appends it to the $newPass
variable. Once 10 characters have been added to the variable, the results are returned to
whatever called the function.

This password generator is very basic and may not meet your
organization's complexity requirements. If this occurs, the account will
still be created but will be disabled. A new password can be applied at a
later time that meets the necessary complexity requirements.

Managing Windows Network Services with PowerShell

88

Example output of creating multiple accounts is shown in the following screenshot:

There's more...
The following lists the additional features of AD users:

 f Additional AD properties: The script as presented here sets only a minimum
number of properties necessary for functional users. Several additional properties
are as follows:

 � Personal information, such as home address and phone numbers

 � Organizational information, such as manager and office location

 � Remote access settings

 � AD information, such as home directory and logon script

 � Workstations the user is allowed to log on to

 f Template user: Instead of creating a new account for each user, it is possible to
create a template account that is used for all new accounts. Template accounts
are useful for maintaining common settings, such as logon script or home directory
location, and then not keep the setting for all future accounts. To use a template
account, simply load the account using Get-ADUser and reference the account
using the –Instance parameter. Refer the following example:

$templateUser=Get-ADUser -Identity Administrator
New-ADUser -Name Admin2 -Instance $templateUser -AccountPassword
$securePass

See also
For a full list of available user properties that can be configured, see http://technet.
microsoft.com/en-us/library/hh852238.

http://technet.microsoft.com/en-us/library/hh852238
http://technet.microsoft.com/en-us/library/hh852238

Chapter 2

89

Searching for and reporting on AD users
Once your AD environment has existed for some time, finding and changing settings in your
environment can become difficult. For example, let's say when the domain was first created,
all the users had the same logon script named logon.bat. Over time, specific needs arose
that caused the creation of logon2.bat, and new_logon.bat, and testlogon.bat,
with different users assigned to each script.

As an administrator, you want to consolidate all these logon scripts into one, but you need
to know what this will impact. You need to know which logon scripts are being used, who is
using which ones, and why the different scripts exist. Thanks to the capabilities of AD and
PowerShell queries, these items can easily be found.

In this recipe we will perform multiple queries against Active Directory. We will be returning
different information.

How to do it...
Carry out the following steps to search for and report on AD users:

1. To report on all users and their logon scripts execute the following code:
Get-ADUser -Filter * -Properties SamAccountName, DisplayName, `
ProfilePath, ScriptPath | `
Select-Object SamAccountName, DisplayName, ProfilePath, ScriptPath

2. To find all disabled user accounts execute the following code:
Get-ADUser –Filter 'Enabled -eq $false'

3. To find users who haven't logged in for 30 days execute the following code:
$logonDate = (Get-Date).AddDays(-30)
Get-ADUser -Filter 'LastLogonDate -lt $logonDate' | Select-Object
DistinguishedName

4. To find accounts with multiple logon failures execute the following code:

$primaryDC = Get-ADDomainController -Discover -Service PrimaryDC
Get-ADUser -Filter 'badpwdcount -ge 5' -Server $primaryDC.Name `
-Properties BadPwdCount | Select-Object DistinguishedName,
BadPwdCount

Managing Windows Network Services with PowerShell

90

How it works...
The first example uses Get-ADUser and queries Active Directory for all User objects,
and returns them to PowerShell. The accounts are then piped through Select-Object
to return the username, profile location, and logon script to the screen.

The second example creates a simple filter for AD to show accounts that are not enabled.
Get-ADUser is called with this filter and it returns the appropriate accounts.

The third example creates a slightly more robust AD filter that identifies users, who have
not logged in for more than 30 days. We start by creating the $logonDate variable and
assigning it with the date 30 days ago. We then call Get-ADUser with a filter based on the
LastLogonDate attribute, and lastly return Distinguished Name of the users that match
the filter. These may be users who have been on vacation, extended work trips and have not
been able to log on to the domain, or user accounts that no longer are needed.

The fourth example provides a simple filter based on the number of bad password attempts
for an account. We start by identifying the primary domain controller (PDC) in the
environment. When a bad password attempt occurs, it is tracked on the domain controller
initially queried, as well as the PDC emulator. This allows us to query a single server instead
of all the DCs. If a particular account has a high number of password failures, it can be a
sign of possible hacking attempt. As such, it is always helpful to have a script similar to this
available so that the entire domain can be reviewed at a glance to determine if one user
is having a problem, or if it is wide spread issue.

Finding expired computers in AD
As domains grow and change, one of the largest polluters of AD is expired machine accounts.
Whenever a computer is joined to the domain, a machine account is created. However, when
a machine is retired, the machine account is often left. There are no built-in tools to remove
these machine accounts from the domain, and unlike user accounts, they are rarely audited.
This becomes a problem as the environment grows, and auditing of the computer accounts
becomes difficult.

This recipe will show how to search AD for expired, or nearly expired, machine accounts.

Chapter 2

91

How to do it...
Carry out the following steps to find expired computers in AD:

1. To find recently aged accounts execute the following code:
$30Days = (Get-Date).AddDays(-30)
Get-ADComputer -Properties lastLogonDate -Filter 'lastLogonDate
-lt $30Days' | Format-Table Name, LastLogonDate

2. To find older accounts execute the following code:

$60Days = (Get-Date).AddDays(-60)
Get-ADComputer -Properties lastLogonDate -Filter 'lastLogonDate
-lt $60Days' | Format-Table Name, LastLogonDate

How it works...
By default, machine accounts are reset every 30 days, regardless of the user password
expiration policy. With this in mind, we can search for accounts that haven't updated in
30 days in order to find recently aged accounts. In the first step we create a variable named
$30Days. We call Get-Date to return the current date and time, and then use AddDays
to add a negative 30 days. This date is then stored in our variable.

We then call Get-ADComputer to search AD for our computer accounts. We apply a filter
on the lastLogonDate attribute and search for accounts that haven't logged in for more
than 30 days. We then output the computer name and when it last logged on to the domain.
Once the aging accounts are identified, we can proactively find and troubleshoot the
machines to ensure there is no loss of services.

In the second step we perform the same function, but this time allowing for 60 days. In
this scenario, since the machines haven't logged into the domain in twice the maximum
normal, we can likely assume these systems are no longer in our environment. At this
point we can additionally pipe the output of this command into Disable-ADAccount
or Remove-ADComputer to disable or delete the account in AD.

See also
More information about machine account passwords and reset policies can be found at
http://blogs.technet.com/b/askds/archive/2009/02/15/test2.aspx.

http://blogs.technet.com/b/askds/archive/2009/02/15/test2.aspx
http://blogs.technet.com/b/askds/archive/2009/02/15/test2.aspx

Managing Windows Network Services with PowerShell

92

Creating and e-mailing a superuser report
One of the questions I receive every time there is a security audit or review is How many
super users are there? To find this out, I have to manually open up Active Directory and look
at the membership of Domain Admins and Enterprise Admins groups. Once I have identified
the users, the security team then wants a documented list of who has superuser rights,
when they got them, and why.

If your environment is anything like mine, looking at the Domain Admin group membership
will be very surprising. Even though we work hard to limit who has access, more and more
users creep into these groups throughout the year. By the time they are identified, finding
out when, why, and how they were added can be exceedingly difficult. What is needed is
a method of keeping up on the changes as they happen.

In this recipe we will create a superuser report that reports on membership of these critical
groups. This report will show which accounts are in each group, and even highlight any
changes that occurred since the last run. Additionally, the report will be e-mailed for easy
access and retention.

Getting ready
To perform this recipe you will need to be in an Active Directory domain, with a service
account that has access to query AD groups. The script runs on a system as a scheduled
job and saves files to a local directory.

How to do it...
To create the superuser report, we create the following PowerShell script:

[Object[]]$oSuperUsers = New-Object PSObject

Query the super-user groups for members
$oSuperUsers += Get-ADGroupMember -Identity 'Domain Admins' `
-Recursive | Select-Object @{Name='Group';expression={'Domain
Admins'}}, `
Name, objectClass
$oSuperUsers += Get-ADGroupMember -Identity 'Enterprise Admins' `
-Recursive | Select-Object @{Name='Group';expression={'Enterprise
Admins'}}, `
Name, objectClass

Chapter 2

93

Report on current membership
$strMessage = $oSuperUsers | Format-Table Name, objectClass `
-GroupBy Group | Out-String

$exportFile = "c:\temp\superusers.clixml"
if(Test-Path $exportFile)
{
 # Import the results from the last time the script was executed
 $oldUsers = Import-Clixml $exportFile

 # Identify and report on the changes
 $strMessage += "Changes`n"
 $strMessage += Compare-Object -ReferenceObject $oldUsers `
 -DifferenceObject $oSuperUsers | Select-Object @{Name="Group";`
 expression={$_.InputObject.Group}}, @{Name="Name";expression=`
 {$_.InputObject.Name}}, @{Name="Side";expression={$_.
SideIndicator}}`
 | Out-String
}

Export results from this execution
Export-Clixml -InputObject $oSuperUsers -Path $exportFile

Email report to the administrator
Send-MailMessage -From reports@corp.contoso.com -Subject `
"Weekly SuperUser Report" -To admin@contoso.com -Body $strMessage `
-SmtpServer mail.contoso.com

How it works...
The first thing the script does is create a custom PowerShell object named $oSuperUsers
to hold the group, name, and class information. A custom object is used here to make the
results easier to manage and flexible further down the script. Get-ADGroupMember is then
called against the Domain Admins and Enterprise Admins groups and populate the custom
object. The membership of these two groups are organized by the group name and stored
in the $strMessage variable.

An external file, c:\temp\superusers.clixml, is checked to see if this script has
been executed before. If the file exists, it is loaded into the $oldUsers variable using
Import-Clixml. This file holds an exported version of the $oSuperUsers object from
the last run of the script. The two objects are compared using the Compare-Object
command to highlight any differences and appended to $strMessage. Lastly, the
current $oSuperUsers object is exported and overwrites the external file.

Finally, Send-MailMessage combines the group membership and changes into a simple
text e-mail message. The message is sent via SMTP to a mail server and it will appear in the
administrator's mailbox.

Managing Windows Network Services with PowerShell

94

There's more...
To make full use of this script, it would be best to schedule it to run every week. To schedule
the task, we save the command as a .PS1 file and use the following script to add the script
into Windows Task Scheduler:

Define the action to be executed
$taskAction = New-ScheduledTaskAction -Execute `
"%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe" `
-Argument "C:\scripts\superUser.ps1"

Define the execution schedule
$taskTrigger = New-ScheduledTaskTrigger -Weekly -WeeksInterval 1 -At
5am `
-DaysOfWeek Sunday

Define the user account to execute the script
$taskUser = "Corp\ScriptAdmin"
$taskPassword = 'P@$$w0rd'

Name the task and register
$taskName = "Super User Report"
Register-ScheduledTask -TaskName $taskName -Action $taskAction `
-Trigger $taskTrigger -User $taskUser -Password $taskPassword

The script starts by creating New-ScheduledTaskAction. This command identifies the
command to execute, in this case PowerShell.exe, and any additional arguments, such
as our superUser.ps1 file. The -Argument option can be updated based on the location
of your scripts.

Next, we define the schedule for the task. We do this by creating New-
ScheduledTaskTrigger and define a start time and recurrence cycle. In this case we
are executing our script at 5 a.m. every Sunday.

Next, we define our username and password to execute the script. In this situation we are
using a predefined service account and storing the password in plain text.

Chapter 2

95

Lastly, we use Register-ScheduledTask to save the task. Once completed, the task
will appear in Windows Task Scheduler as shown in the following screenshot:

3
Managing IIS with

PowerShell

In this chapter we will cover the following recipes:

 f Installing and configuring IIS

 f Configuring IIS for SSL

 f Configuring a Central Certificate Store

 f Configuring IIS bindings

 f Configuring IIS logging

 f Managing log files

 f Configuring NLB across multiple servers

 f Monitoring load balancing on NLB nodes

 f Placing NLB nodes into maintenance

 f Configuring a development/staging/production site scheme

 f Promoting content in websites

 f Reporting on website access and errors

Introduction
Internet Information Services (IIS) has become a key component in Windows Server. With
IIS you can host publicly facing websites and internal intranets, as well as integrate with
enterprise applications, such as SharePoint, Exchange, and System Center. IIS provides a
central component of Windows Server that allows systems and applications to be expanded
into more complex configurations.

Managing IIS with PowerShell

98

This chapter covers how to install, configure, manage, and maintain IIS websites on Windows
Server 8. In addition to basic management of IIS, this will also cover monitoring and reporting
on IIS, using NLB for load balancing, and utilizing a development/staging/production
configuration/promotion scheme.

Installing and configuring IIS
Websites are useful for multiple every day needs, from hosting static content, such as
pictures, to dynamic content, such as calendars, and even web services. IIS in Windows
Server 8 is extended greatly with additional PowerShell commands and functions.

This recipe will cover how to set up a basic IIS website and configure binding information.

Getting ready
For installing IIS, we will be using a basic Windows Server without any features installed.

How to do it...
Carry out the following steps to install and configure IIS:

1. Open a PowerShell console and install IIS:
Get-WindowsFeature | Where-Object Name –likeweb*
Install-WindowsFeature Web-WebServer –IncludeManagementTools

2. Use Import-Module to load the WebAdministration PowerShell module.

3. Use Get-ChildItem to view the IIS sites:

Get-ChildItem IIS:\Sites

When completed, you should see the configured sites similar to the following
screenshot:

Chapter 3

99

How it works...
In the first step we show all of the IIS-related features (over 50 of them) and their current
install state. At this point we are looking to install only the basic IIS features. This includes
the ability to present web static pages via HTTP, define a default document, perform logging,
present error messages, compress static content to make it easier to send over the internet,
and the management console.

When installing the Web-Webserver feature, it automatically includes the following features:

 f Web-Default-Doc

 f Web-Dir-Browsing

 f Web-Http-Errors

 f Web-Static-Content

 f Web-Http-Logging

 f Web-Stat-Compression

 f Web-Filtering

 f Web-Mgmt-Console

In the second step we load the WebAdministrator module. In PowerShell 3.0 modules
are autoloading, and normally it isn't necessary to use Import-Module. PowerShell
automatically loads modules when commands within the modules are executed, however,
not when accessing the PSDrives presented by the module.

Lastly, we use Get-ChildItem to view the existing IIS websites. The sites are stored in
the IIS: PSDrive under the \Sites directory. The command returns all websites on
the system and information regarding their configuration.

There's more...
A PSDrive, or PowerShell Drive, is a logical drive that has been presented to PowerShell.
This includes local drives on the computer, such as C:\, as well as mapped network drives.
PSDrives also include drives presented by PowerShell providers, such as the Registry, Active
Directory, and IIS.

Managing IIS with PowerShell

100

A full list of PSDrives can be viewed by executing Get-PSDrive:

Configuring IIS for SSL
The most common way of securing web traffic is to use SSL encryption. SSL signs and
encrypts traffic between a web server and client in a way that is difficult for an outsider to
view, change, or impersonate. If you have ever purchased something online, the web page
that accepted your credit card details was likely encrypted using SSL.

In this recipe we will cover how to configure an IIS site to use SSL encryption.

Getting ready
Two things are required to use SSL encryption: a certificate capable of encrypting SSL traffic
and a website configured to support SSL. If the website will be publicly facing, it is suggested
you use an SSL certificate from a public Certificate Authority that is by default trusted by most
web browsers.

How to do it...
Carry out the following steps to configure IIS for SSL:

1. Request an SSL certificate from your Certificate Authority.

Chapter 3

101

2. Install the certificate in the Certificates (Local Computer)\Personal\
Certificates store. Assuming you are using an internal CA and permissions, the
following command can request and install the certificate:
Get-Certificate -Template WebServer -DnsName NLB_IIS.corp.contoso.
com - CertStoreLocation Cert:\LocalMachine\My

The certificate should now appear in the store as shown in the following screenshot:

3. Create a new HTTPS binding on our website:
New-WebBinding -Name 'Default Web Site' -Protocol https -Port 443

4. Assign the certificate to the new binding:

$myCert = Get-Item Cert:\LocalMachine\My* | `
Where-Object Subject -eq 'CN=NLB_IIS.corp.contoso.com'
$myCert | New-Item IIS:\SslBindings\0.0.0.0!443

After completing the preceding commands, you should see the following:

Managing IIS with PowerShell

102

How it works...
We start by requesting and installing an SSL certificate on our web server. If the Certificate
Authority is outside of your company, you will have to follow the instructions provided by the CA
to request the certificate. Then we install the certificate to the local computer's personal store.

Next, we use New-WebBinding to create a new binding for the default website using HTTPS
on port 443. Once the binding is created, we get the SSL certificate by ID and assign it to
the binding.

To access the website, we now browse to https://<servername>. Note the https
construct identifying the connection to use SSL.

There's more...
We can create a self-signed certificate for use with SSL. There are often times, where you
need a certificate for SSL traffic but do not require a fully trusted environment. Working in
a test/dev environment, where functionality is more important than security, you can use
a self-signed certificate.

To create the certificate, on the web server run the following code:

New-SelfSignedCertificate -DnsName "test1.corp.contoso.com" -
CertStoreLocationCert:\LocalMachine\My

After completing the preceding commands, you should see the following:

This process creates a new certificate for the DNS named test1.corp.contoso.com. This
will allow the web server to sign all of its traffic, while allowing the clients to authenticate the
server. In order for this certificate to work properly, it must be exported and installed in the
Trusted Root Certificate Authorities certificate store on client machines.

Chapter 3

103

To export the self-signed certificate from the web server to a file, execute the following:

$myCert = Get-ChildItem -Path Cert:\LocalMachine\My | `
Where-Object Subject -EQ 'CN=test1.corp.contoso.com'
Export-Certificate -Cert $myCert -FilePath C:\temp\test1.crt

To import the certificate to a client's Trusted Root Certificate Authorities store, copy the
certificate to the client and execute the following:

Import-Certificate -FilePathC:\temp\test1.crt `
-CertStoreLocation Cert:\LocalMachine\Root

A self-signed certificate should never be used in a production
environment. Maintaining trusts and authentication with a self-signed
certificate is difficult and insecure.

Configuring a Central Certificate Store
When working with IIS websites that use SSL, certificate management can often become
difficult. The initial setup for one server or site may be simple, but every time you add or
replace an IIS host, you need to confirm the SSL certificates are copied over and imported on
the server. Additionally, when the certificate expires, the new certificate must be copied to all
hosts that need it, and reregistered.

New in IIS8 is the ability to create a centralized certificate store that hosts certificates for
all the websites in one place. Instead of manually copying and installing the certificates to
each server, the web servers then simply access the centralized store and download the
files as needed.

Getting ready
In this recipe we are going to publish the default website on a server with a precreated
certificate for test1.corp.contoso.com. To begin, we create our certificate with both
private and public keys and export it into a *.PFX file. This file is then copied to a network
share, in our case a share on CorpDC1.

Additionally, a service account is created named SSLCerts that has access to this share
only. We use a dedicated service account because we may want to save the setup commands,
which contain the username/password, in our server build process. This way, the user
account has limited access and the security threat is minimized.

Managing IIS with PowerShell

104

How to do it...
Carry out the following steps to configure a Central Certificate Store:

1. Configure the certificate store:
Install-WindowsFeature Web-CertProvider
Enable-WebCentralCertProvider -CertStoreLocation \\corpdc1\certs
-UserName'Corp\SSLCerts' -Password 'Pa$$w0rd!' -PrivateKeyPassword
123456

2. Configure the site to use SSL:

New-WebBinding -Name 'Default Web Site' -HostHeader Test1.corp.
contoso.com -Protocol https -SslFlags 2

How it works...
Traditionally, installing certificates for SSL required copying the certificate to each server,
and then importing it into the local computer certificate store. With the Central Certificate
Store, we simply copy the certificates to a common file share, and configure a website to
use the certificate.

In the first step, we install the Centralized SSL Certificate Support feature and enable the
provider on our server. The provider is configured with the location, username, and password
to access the network share, as well as the password used to encrypt the private key.

Certificates used for web servers contain two keys: a private key and a
public key. The private key is used to sign and encrypt traffic, while the
public key is used to authenticate the server and decrypt the traffic. The
private key is encrypted within the certificate as an additional layer of
security, and a password is required to access it.
When using a Central Certificate Store, it is important that all certificates in
the store use the same private key password so that they can be decrypted
by the store and provided to the web servers.

In the second step, we configure the default website to use the certificate test1.corp.
contoso.com. In this situation we use the –HostHeader switch of Test1.corp.
contoso.com to reference the certificate we are attempting to use. We also specify the –
SslFlags switch with a value of 2, which instructs the web server to use a certificate from
the Central Certificate Store. There are four options available for the –SslFlags switch:

Chapter 3

105

Value Description
0 Regular certificate in the Windows Certificate Store
1 SNI certificate in the Windows Certificate Store
2 Regular certificate in the Central Certificate Store
3 SNI certificate in the Central Certificate Store

There's more...
To access the website, register the address in DNS and access the site the same as
any other HTTPS website. Of all the certificates in the store, IIS will determine which
to use based on the name in the web request.

We can confirm the Central Certificate Store is functioning properly by accessing out the
website via HTTPS. In Internet Explorer clicking on the lock icon displays information about
the certificate used to sign the connection. As you can see from the following screenshot,
we can confirm the certificate name matches the URL requested, and that the client trusts
the CA that issued the certificate.

Managing IIS with PowerShell

106

See also
More information regarding using SNI based certificates is included in the recipe, Configuring
IIS bindings, in this chapter.

Configuring IIS bindings
By default, web servers operate on port 80 and only service a single website. However, often
times there is a need to host multiple websites on the same server and use different IP
addresses, IP ports, or even names to differentiate between the sites.

This recipe will show how to set up multiple websites on the same server using different
forms of web bindings.

How to do it...
Carry out the following steps to configure IIS bindings:

1. Create a new website using a unique IP address
New-Website -PhysicalPath C:\inetpub\IPBinding -Name IPBinding
-IPAddress 10.10.10.250

When finished, PowerShell will return information about the site and binding.

2. Create a new website using a unique TCP port:
New-Website -PhysicalPath C:\inetpub\PortBinding -Name PortBinding
-Port 88 -IPAddress *

When finished, PowerShell will return information about the site and binding:

Chapter 3

107

3. Create a new website using host headers:
New-Website -PhysicalPath C:\inetpub\HostHeader -Name HostHeader
-HostHeader HostHeader

When finished, PowerShell will return information about the site and binding:

4. Change the binding of a website:

Set-WebBinding -Name PortBinding -BindingInformation "*:88:"
-PropertyName Port -Value 89

How it works...
In the first step we create a new website and bind it to a dedicated IP address. Our web
server has an additional IP address of 10.10.10.250 assigned specifically for use by our
new site. We create the new site named IPBinding with the address assigned. Because
no port was defined, IIS defaults to assigning port 80.

In the second step we create a new website and bind it to a specific port. In this instance we
are telling IIS that any traffic received on port 88 should be directed to the website named
PortBinding. To access the site, users will need to type http://server:88 to instruct
the web client to use an alternate port.

This website is configured to listen on all IP addresses (demonstrated
by the * in the binding command). If the server has multiple addresses
assigned, this may not be the desired configuration.

In the third step we create a website and bind it using host headers. Host headers are
alternative names that a server can be accessed by and often need to be registered in
DNS for clients to find and connect. To access this site, users will need to type http://
HostHeader for the web server to identify the request and return the appropriate result.

http://server:88
http://HostHeader
http://HostHeader

Managing IIS with PowerShell

108

As we can see in the following screenshot, we can easily support multiple sites on a single IIS
server using different binding types:

Lastly, we call Set-WebBinding to change the binding of an existing site. To make the
change we identify the site and existing binding information, and then specify the property
we are changing and the new value. In this case we are changing the port used for the
PortBinding site, however this command can be used for host headers and IP addresses
as well.

Set-WebBinding doesn't return any output to the screen. To view the new binding
information for a site, use Get-WebBinding.

Get-WebBinding -Name PortBinding

There's more...
The following is more information about binding:

 f Port binding limitations: Port binding can result in problems in some environments
because it passes web traffic on non-standard ports. Some environments are
configured to transfer only HTTP (80) or HTTPS (443) traffic between networks.
Often times this is due to security requirements, other times it is due to restrictions
of firewalls and proxies.

 f Host header limitations: Host headers are often the easiest method to set up
multiple websites on a single server; however, they also has the most restrictions.
Because host headers rely on the name of the site being accessed to distinguish
which data to return, if the site name is not given, the wrong data may be returned.

Say for instance, you think your client may be having issues with DNS. In order to test
this you type in the IP address of the website instead of the name. In this case, the
web server does not know which site you requested and possibly will return the
wrong site.

Chapter 3

109

 f Host headers with SSL: New in IIS 8 is the ability to support Server Name Indicators
(SNI), which allows the server to support multiple SSL sites using the same address
and port. Both the web client and web server must support the use of SNI. Most
modern browsers already support this feature.

See also
More information on using Server Name Indicators can be found at:

 f http://en.wikipedia.org/wiki/Server_Name_Indication

 f http://blogs.msdn.com/b/kaushal/archive/2012/09/04/server-name-
indication-sni-in-iis-8-windows-server-2012.aspx

Configuring IIS logging
By default, IIS logs nearly every transaction clients perform against the server. This is a great
repository of information when debugging issues or when trying to profile your users and
identify which resources are popular, which are not popular, and which are generating errors.

This recipe will cover how to configure IIS logging.

How to do it...
Carry out the following steps to configure IIS logging:

1. Change the IIS logging directory:
Set-ItemProperty 'IIS:\Sites\Default Web Site' -Name logFile.
directory -Value 'C:\Logs\IIS'

2. Change the logging type:
Set-ItemProperty 'IIS:\Sites\Default Web Site' -Name logFile.
logFormat 'W3C'

3. Change logging frequency:
Set-ItemProperty 'IIS:\Sites\Default Web Site' -Name logFile.
period -Value Weekly

4. Change logging to use a maximum size:
Set-ItemProperty 'IIS:\Sites\Default Web Site' -Name logFile.
period -Value MaxSize
Set-ItemProperty 'IIS:\Sites\Default Web Site' -Name logFile.
truncateSize 9000000

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication
http://blogs.msdn.com/b/kaushal/archive/2012/09/04/server-name-indication-sni-in-iis-8-windows-server-2012.aspx
http://blogs.msdn.com/b/kaushal/archive/2012/09/04/server-name-indication-sni-in-iis-8-windows-server-2012.aspx
http://blogs.msdn.com/b/kaushal/archive/2012/09/04/server-name-indication-sni-in-iis-8-windows-server-2012.aspx

Managing IIS with PowerShell

110

5. Disable logging:
Set-ItemProperty 'IIS:\Sites\Default Web Site' -Name logFile.
enabled -Value False

How it works...
The first step changes the location for log files for the default website instance. In this
situation we are updating the logFile.directory property and changing the log
directory to C:\Logs\IIS. To view the location of the log files, instead of executing Set-
ItemProperty, we use Get-ItemProperty, as follows:

Get-ItemProperty 'IIS:\Sites\Default Web Site' -Name logFile.
directory.value

The second step changes the logging type for the default website instance. In this case we
are updating the logFile.logFormat property and changing the logging format to W3C;
acceptable values are:

 f IIS

 f NCSA

 f W3C

 f Custom

The third step updates the logFile.period property and changes the logging frequency for
the default website instance. This is the frequency at which IIS will create new log files for the
website. Acceptable values are:

 f Hourly

 f Daily

 f Weekly

 f Monthly

 f Maximum size

Chapter 3

111

In the fourth step we are updating the logFile.period and logFile.truncateSize
parameters in order to configure logging to create a new log file once it reaches a certain size.
Instead of creating a new file every hour, day, or week, they will continue to grow until they
reach their maximum size and then create a new log.

The last step updates the logfile.enabled parameter in order to disable logging for the
website. While this is not a best practice in most environments, there are situations where
logging is unnecessary and can overwhelm the system. For example, if you have a web service
which is accessed automatically by a large number of systems, this can cause issues by filling
up the drives and generating excessive disk traffic. If the site is known to be stable, and there
is no need to review the log files, you can simply disable logging.

Managing log files
By default, IIS is configured to create a separate log file for each day. Unlike many other
applications such as Exchange, IIS does not contain a native method of maintaining the
number or size of the log files.

As IIS saves log files, the log files' sizes and number can quickly grow out of control. For
instance, a web server that has been in production for a year can have 365 log files (one for
each day) or more. A busy website or web service can potentially fill the OS drive of a server
within a few weeks or months.

While this is a great repository of information, we don't want our logging to negatively impact
the server. Chances are that if we need to review the files, we will only need the last few days
or few weeks of files, and can remove anything older.

This recipe shows how to filter through the log files and remove those older than
a certain date.

Getting ready
In this recipe we will be searching for any log files older than seven days and deleting them.
When first running this script, it should be against a test server to ensure the outcome is
as desired.

This example will delete log files from all websites on the target computer.
Care should always be taken to ensure it is safe to remove the content prior
to executing the script.

Managing IIS with PowerShell

112

How to do it...
Open a PowerShell console and execute the following code:

$logDirs = Get-ChildItem -Path IIS:\Sites | Get-ItemProperty `
-name logFile.directory.value | Select -Unique
$numDays = -7
foreach ($myDir in $logDirs){
 $myDir = [Environment]::ExpandEnvironmentVariables($myDir)
 Get-ChildItem -Path $myDir -Recurse | Where-Object LastWriteTime
-lt `
 (Get-Date).AddDays($numDays) | Remove-Item
}

How it works...
The script begins by calling Get-ChildItem to list all of the websites in IIS. The websites
are queried for logFile.directory.value for each site in order to determine the
location of the log files. The output is then placed into the $logDirs variable.

Each logging directory is then cycled through in order. The first command, $myDir = [Env
ironment]::ExpandEnvironmentVariables($myDir), is used to convert any system
variables (such as %SystemDrive%) into its fully qualified path to be used by PowerShell.

Once the full path of the log file directory is defined, the script then recursively gets all items
in the folder and subfolders. This list is filtered based on LastWriteTime to exclude files
newer than seven days. Those files are then piped to Remove-Item in order to be deleted.

There's more...
You may want to keep your log files for more than seven days, but you don't want them to
remain on the web server. This will allow you to retain a central repository for a longer time,
but not overwhelm your web servers with log files. In that case the script can be modified
to call Move-Item to move the log files to a remote location instead of deleting them.

Configuring NLB across multiple servers
One of the easiest methods of making a website highly available is to use a Network Load
Balancer (NLB). The NLB role resides on the web servers themselves and provides a virtual
IP address that balances traffic between the individual nodes. Clients make requests to the
virtual address, and the web servers communicate with each other to determine which will
service the request.

Chapter 3

113

This results in a website that is highly available and can sustain individual server failures, but
also provides a scale-out capability to grow websites quickly and easily.

This recipe will cover setting up and configuring an NLB cluster in order to provide a redundant
website infrastructure.

Getting ready
To configure NLB, we will need a minimum of two servers with three static IP addresses, all
connected via a common Ethernet segment. As you can see in the following diagram, I have
predetermined my IP addresses of 10.10.10.241 for Web1, 10.10.10.242 for Web2, and
10.10.10.240 for the virtual address which we will name NLB_IIS.

If you are managing NLB clusters remotely, you will need to install the
RSAT-NLB feature to install the NLB tools. This can be performed
by executing Install-WindowsFeature RSAT-NLB on your
management station.

Managing IIS with PowerShell

114

How to do it...
Carry out the following steps for configuring NLB across multiple servers:

1. Install the NLB feature on the web servers:
Invoke-Command -ComputerName web1, web2 `
-ScriptBlock { Install-WindowsFeature NLB -IncludeManagementTools
}

2. Set up the NLB cluster on first host:
New-NlbCluster -HostName web1 -InterfaceName Ethernet `
-ClusterName NLB_IIS -ClusterPrimaryIP 10.10.10.240 `
-SubnetMask 255.255.255.0 -OperationMode Multicast

When completed, you will see confirmation of the new cluster and virtual IP address
similar to the following screenshot:

3. Add the second host to cluster:
Get-NlbCluster -HostName web1|Add-NlbClusterNode -NewNodeName web2
-NewNodeInterface Ethernet

When completed, you will see confirmation of the new node in the cluster with HostID
of 2.

4. Specify the ports for the cluster to balance:

Set-NlbClusterPortRule -HostName web1 -NewStartPort 80 -NewEndPort
80

Chapter 3

115

When completed, the port configuration of the cluster will be displayed as shown in
the following screenshot:

How it works...
In the first step we use Invoke-Command to install the NLB feature on both web servers
Web1 and Web2.

In the second step we use New-NlbCluster to configure NLB on Web1 and create
the Cluster IP address of 10.10.10.240. We also define the NLB cluster to operate
in multicast mode, a special configuration that allows the NLB nodes to operate with
only a single interface on the server.

Next, we configure call Add-NlbClusterNode to Web2 as an additional member of the
NLB cluster. Note that we do not have to identify the cluster address or operation mode like
was done for the first server; instead, those attributes are inherited from the cluster itself.

Finally, we call Set-NlbClusterPortRule to configure NLB to listen only on port 80 for
HTTP traffic. By default, NLB attempts to load balance all traffic on all ports; however, for our
purposes we only need port 80. If we installed websites on multiple ports, or used HTTPS, we
could then execute Add-NlbClusterPortRule to add additional ports to the NLB cluster.

There's more...
The following is more information about NLB configuration for websites:

 f Accessing the website: Once the NLB cluster is set up and running, the only
remaining task to access the website is to register the virtual IP address in DNS.
In this scenario if we register the DNS record NLB_IIS.corp.contoso.com to
10.10.10.240 then open a web browser to http://nlb_iis.corp.contoso.
com; the load balanced site is returned.

 f NLB modes: There are three modes that an NLB cluster can operate in: multicast,
unicast, and IGMP multicast. Multicast, as mentioned earlier, is the easiest to set
up because it works well with a single network adapter. IGMP multicast is similar
to multicast, but relies on IGMP communications between the servers to balance
traffic. Unicast is preferred for large production environments as it separates the NLB
communication and web traffic into separate interfaces.

http://nlb_iis.corp.contoso.com

Managing IIS with PowerShell

116

Monitoring load balancing across NLB nodes
Once an NLB cluster is configured and running, one of the questions that is asked is why one
host is working harder than another, or why one node has all the connections and the other
has none. Normally, these questions are resolved by modifying the Affinity settings.

At its base, NLB balances traffic between different nodes in a cluster based on the total
number of connections to each node. This information is then combined with the cluster's
Affinity settings to group source hosts and networks onto the same node.

This recipe will cover the basic performance counters needed to identify if NLB is working and
balancing load correctly.

Getting ready
In this recipe we will be working with the NLB configuration created in the prior recipe. In this
case the cluster consists of only two nodes, but in production environments this can grow
much larger.

How to do it...
Carry out the following steps to monitor load balancing across NLB nodes:

1. View the status of the hosts in the cluster:
Get-NlbClusterNode -HostName web1

When completed, the output will show the state of each node in the cluster:

2. View the cluster's Affinity settings:
Get-NlbClusterPortRule -HostName web1

When completed, the output will show the Affinity settings:

Chapter 3

117

3. View the host connection count for each node:

$myNodes = Get-NlbClusterNode -HostName web1
$myCounter = $myNodes.Name | ForEach-Object {
 "\\$_\Web Service(_Total)\Current Connections"
}
Get-Counter -Counter $myCounter

When completed, the output will show the current number of connections to each
node in the cluster:

How it works...
In the first step we view the status of the nodes in the cluster. This command will list all the
nodes in the cluster, which interface they are attached to, and most importantly, the state of
the node in the NLB cluster. In this case the state is Converged, which means the nodes are
functioning properly. Additional values include Shutting down, Stopped, and Suspended.

Next, we use Get-NlbClusterPortRule to view the cluster's Affinity setting. By default
the affinity is set to Single, meaning all traffic from a specific host is directed to the same
cluster node, regardless of load. The default Affinity settings work well in many environments,
however some firewalls and proxy servers pass traffic to the NLB nodes as though the firewall
originated the request instead of the client. This then causes the NLB cluster to see all the
traffic as originating from a single address and therefore passes the traffic to the same node.
In this case, setting the affinity to None is preferable.

Lastly, we use PowerShell's Get-Counter command to retrieve performance counters on
both NLB nodes. In this case we are looking at the \Web Service(_Total)\Current
Connections counter to return the number of connections to the web server. If you are
using NLB to balance something other than web services, you will need to find an appropriate
connections counter.

Managing IIS with PowerShell

118

There's more...
If you do not have a lot of traffic currently on your NLB site, and you want to generate a test
load, the following script is a quick way to start. The script creates 10 background jobs, each
downloading web pages from the target web server. Each job will download the default web
page, sleep 2 seconds, and then repeat for 100 times before finally exiting. This should be
long enough to confirm the balancing of your NLB cluster.

1..10 | ForEach-Object{
 Start-Job -ScriptBlock {
 $client = New-Object System.Net.WebClient
1..100 | ForEach-Object{
 $client.DownloadData("http://10.10.10.240")
 Start-Sleep 2
 }
 }
}
Wait-Job *
Remove-Job *

All of the traffic in this test will be generated from the same host, and
depending on the affinity rules, the NLB cluster may direct all of the traffic
to the same node. If that occurs, you can run the test simultaneously from
two hosts, or change affinity to None.

Placing NLB nodes into maintenance
One of the great benefits of NLB is the ability to remove one or more hosts from the cluster
without affecting the overall service. This is often done when installing patches or upgrading
code on a single server at a time. Removing hosts may result in degraded performance, and
therefore, should only be done during a maintenance window, where performance is not an
issue, but the overall service will remain online.

Getting ready
This recipe assumes you have a two-node cluster (Web1 and Web2) and Web2 is being taken
offline to perform maintenance. The maintenance may require multiple reboots, so we will
need to ensure the node remains offline until all work is finished.

Chapter 3

119

How to do it...
Carry out the following steps to place NLB nodes into maintenance:

1. Safely shutdown and suspend the NLB node on Web2:
$myCluster = Get-NlbCluster web1
$myNode = $myCluster | Get-NlbClusterNode -NodeName web2
$myNode | Stop-NlbClusterNode -Drain
$myNode | Suspend-NlbClusterNode
$myNode | Set-NlbClusterNode -RetainSuspended $true

2. Perform maintenance on the server.

3. Once the maintenance is complete, restart the node and add it into production:
$myCluster = Get-NlbCluster web1
$myNode = $myCluster | Get-NlbClusterNode -NodeName web2
$myNode|Resume-NlbClusterNode
$myNode | Start-NlbClusterNode

How it works...
The first step starts by connecting to the NLB cluster, and then to the specific node that places
the node object into the $myNode variable. The node is then stopped with the –drain switch,
which tells the node to stop accepting new connections, but continue servicing existing
connections. This is used to ensure that active sessions are not dropped and active users
aren't affected, however this can result in the stop process to take several minutes, hours, or
in extreme cases, days.

Once the node is safely stopped, it is then suspended and configured to remain suspended.
This allows us to reboot the host if needed, and keeps the NLB service from unexpectedly
starting and servicing clients. At this point we can safely perform maintenance on the server.

The third step is essentially the opposite of the first. The script starts by connecting to the
cluster and node and placing the node object into the $myNode variable. The node is then
resumed, or unsuspended. Lastly, the node is started to begin servicing requests.

There's more...
If you execute Get-NlbClusterNode during the shutdown process, you will see that the
NLB node proceeds through multiple states before finally suspending. Each of these states
may remain for quite some time depending on the number of connections and lifetime of
those connections.

Managing IIS with PowerShell

120

Configuring a development/staging/
production site scheme

Many websites use a multi-tiered infrastructure to promote content between development
and production environments. One of the simplest is a three-tier development, staging,
and production configuration. In this scenario the website and code is developed on a
development instance. Once the code is ready, it is promoted to staging, where it is tested and
confirmed to be working properly. Finally, it is promoted to production for general use.

In this recipe we will set up a basic three-tier website scheme on a single website in an NLB
configuration. The same process can be performed for a non-NLB website by only providing
one computer name to the scripts.

Getting ready
This recipe assumes an NLB web server configuration as shown in the Configuring NLB across
multiple servers recipe in this chapter.

How to do it...
Carry out the following steps to configure this three-tier site scheme:

1. Create the folders on the web servers:
Invoke-Command -ComputerName web1, web2 -ScriptBlock {
 New-Item "C:\InetPub\wwwDev" -ItemType Directory
 New-Item "C:\InetPub\wwwStage" -ItemType Directory
 New-SmbShare -NamewwwDev -Path C:\InetPub\wwwDev `
 -FullAccess corp\administrator
}

2. Create the sites and configure them to use host headers:
Invoke-Command -ComputerName web1, web2 -ScriptBlock {
 New-Website -Name "Development.corp.contoso.com" `
 -HostHeader "development" -PhysicalPath "C:\InetPub\wwwDev\"
 New-Website -Name "Staging.corp.contoso.com" `
 -HostHeader "staging" -PhysicalPath "C:\InetPub\wwwStage\"
}

3. Register DNS for host headers:

Add-DnsServerResourceRecord -CName -HostNameAlias www.corp.
contoso.com `
-Name development -ZoneName corp.contoso.com `
-ComputerName corpdc1.corp.contoso.com

Chapter 3

121

Add-DnsServerResourceRecord -CName -HostNameAlias www.corp.
contoso.com `
-Name staging -ZoneName corp.contoso.com `
-ComputerName corpdc1.corp.contoso.com

How it works...
In the first step we are creating directories on our web servers to hold our development and
staging environments. We create two directories, C:\InetPub\wwwDev and C:\InetPub\
wwwStage, to hold the development and staging environments. The production environment
will remain at C:\InetPub\wwwRoot.

In addition to creating the necessary folders, the script also calls New-SmbShare to create
a Windows share for the C:\InetPub\wwwDev directory on both servers. This directory is
shared so that code can be synchronized between the servers.

The second step calls New-Website to configure two new websites for the development and
staging folders. These websites are configured to use the host headers of development and
staging, leaving the default website to service production requests.

Lastly, Add-DnsServerResourceRecord is used to register the CName records. The CName
records are used to register additional names to the same Alias record. These records point
to www.corp.contoso.com, which returns the IP address of the production website.

Promoting content in websites
Once our three-tier website scheme is set up, the next step is to configure the content promotion
method. This recipe shows how to promote content between the various environments.

Getting ready
This recipe assumes the development/staging/production website configuration created in
the prior recipe.

How to do it...
Carry out the following steps to promote content in websites:

1. Copy the content between the web servers:
Copy-Item -Path \\web1\wwwDev -Destination \\web2\wwwDev -Verbose
-Recurse -Force

http://www.corp.contoso.com
http://www.corp.contoso.com

Managing IIS with PowerShell

122

2. Copy the files from development to staging:
Invoke-Command -ComputerName web1, web2 -ScriptBlock {
 Copy-Item -Path C:\inetpub\wwwDev -Destination C:\inetpub\
wwwStage -Verbose -Force -Recurse
}

3. Copy files from staging to production:
Invoke-Command -ComputerName web1, web2 -ScriptBlock {
 Copy-Item -Path C:\inetpub\wwwStage -Destination C:\inetpub\
wwwRoot -Verbose -Force -Recurse
}

How it works...
The first step copies files between the web servers in order to synchronize the content.
The assumption here is that development has occurred solely on Web1, so Web2 needs to be
updated with the latest version of code. If necessary, this script can also be reversed to copy
content from Web2 into Web1.

The second step promotes content from development into staging. Similar to the prior
example, this script uses Copy-Item to copy content from one folder to the other, but in this
case, the content does not traverse servers; instead, it is promoted within each server.

The last step promotes content from staging into production. This step is the same as the
previous one, only changes are the source and destination folders.

There's more...
There are a couple of extensions that can be added to these scripts to improve their
functionality. The first command would be to execute Remove-Item on the target location
prior to the Copy-Item command. An example of what the code would look like is as follows:

Invoke-Command -ComputerName web1, web2 -ScriptBlock {
 Remove-Item -Path C:\inetpub\wwwStage -Force -Recurse
-Confirm:$false
 Copy-Item -Path C:\inetpub\wwwDev -Destination C:\inetpub\wwwStage
-Verbose -Force -Recurse
}

This will cause the folders and files in the target location to be removed entirely prior to
being promoted. If your environment is highly dynamic and files are being removed or moved
consistently, this may be needed to ensure the content is correct.

Chapter 3

123

The second extension would be to copy the files to a temporary target, and then rename the
folders when the copying is finished. For instance, instead of wwwStage, the Copy-Item
command is changed to copy to a wwwStageTmp folder. Once the data is copied to the
wwwStagetmp folder, Rename-Item is called to rename the original folder and the new folder.

Invoke-Command -ComputerName web1, web2 -ScriptBlock {
 Copy-Item -Path C:\inetpub\wwwDev -Destination C:\inetpub\
wwwStageTmp -Verbose -Force -Recurse
 Rename-Item -Path C:\inetpub\wwwStage -NewName wwwStageOld -Force
-Confirm:$false
 Rename-Item -Path C:\inetpub\wwwStageTmp -NewName wwwStage -Force
-Confirm:$false
}

This will result in the promotion of the code to not occur until the very end of the script, but
will have the added benefit of limiting the amount of time that the content is in an unknown
state. This script also has the benefit of ensuring no old content is retained once the
promotion occurs.

This script could be separated into two components, allowing the copying of content to occur
separately from the ultimate promotion. For instance, if the website is very large in size, and
you have a minimal amount of time to promote the content, the data can be copied to the
temporary location ahead of time. Then, during your change window, the folders are quickly
renamed, resulting in minimal downtime of the site.

Lastly, this script also has the benefit of providing a rollback method. If a change is made
to the site and it is promoted, but then an issue is found, the content can be rolled back
by simply renaming the folders. In the example shown, we could delete the wwwStage
folder (because it exists in wwwDev, there is no need to keep the contents) and rename
wwwStageOld back to wwwStage and the site will be the same as before the promotion.

Reporting on website access and errors
After a website has been active for some time, you will likely want to review the logs to see
which content is popular and which is not. Assuming you have kept the default logging method
of W3C, and the default sections, the script explained in this recipe should give a high-level
view of your website.

How to do it...
Here, we are using a PowerShell script to parse the IIS log files and generate a report:

Function Parse-IISLogs
{
 # Identify the IIS logging directory

Managing IIS with PowerShell

124

 Import-Module WebAdministration
 $logFile = Get-ItemProperty 'IIS:\Sites\Default Web Site' `
 -Name logFile.directory.value
 $logFile = [Environment]::ExpandEnvironmentVariables($logFile)

 # Export log files to a temporary CSV file
 $logFile += "**.log"
 (Get-Content $logfile | Where-Object {$_ -notlike "#[S,V,D]*"}) `
 -replace "#Fields: ","" | Out-File $env:temp\webLog.csv

 # Import the CSV file to memory
 $webLog = Import-Csv $env:temp\webLog.csv -Delimiter " "

 # Parse the CSV file for the top files
 Write-Host "Top 3 files`n"
 $webLog | Group-Object -property 'cs-uri-stem' | Sort-Object `
 -Property Count -Descending | Select-Object Count, Name `
 -First 3 | Out-String

 # Parse the CSV file for the top 3 referers
 Write-Host "Top 3 referers`n"
 $webLog | Group-Object -property 'cs(Referer)' | Sort-Object `
 -Property Count -Descending | Select-Object Count, Name `
 -First 3 | Out-String

 # Parse the CSV file for the top 3 useragent
 Write-Host "Top 3 agents`n"
 $webLog | Group-Object -property 'cs(User-Agent)' | Sort-Object `
 -Property Count -Descending | Select-Object Count, Name `
 -First 3 | Out-String

 # Parse the CSV file for the top 3 404 errors
 Write-Host "Top 3 File Not Found (404)`n"
 $webLog | Where-Object sc-status -eq 404 | Group-Object `
 -Property 'cs-uri-stem' | Sort-Object -Property Count -Descending|
`
 Select-Object Count, Name -First 3 | Out-String

 # Clean up
 Remove-Item $env:temp\webLog.csv
}

Chapter 3

125

How it works...
This script begins by importing the WebAdministration module in order to make the IIS:\
PSDrive available. The script then finds the location of the log files for the default website.

We want to open the log files themselves, so we append **.log to the $logFile variable.
This adds wildcards that will include all log files one directory below the folder initially listed.
Get-Content is called to read the log files and the contents are then piped to Where-Object
to filter out the first three lines of the log which contain information about the log itself.

The new first line of the log file should now contain the column names for the file. We remove
the initial #Fields content and then export the information to a CSV file. Once exported, we
import the CSV file in a format that can be easily searched and filtered.

Once the CSV file has been imported, finding the data is matter of selecting and filtering for
the data we need. To find the most accessed files or pages, we use Group-Object on the
cs-uri-stem column to find the number of times an object is referenced. The column is
then sorted based on the number of times a file has been accessed, and then limited to the
first three. This combination of grouping, sorting, and selecting the first three items allows us
to identify the most popular content.

The next two blocks perform the same tasks: grouping, sorting, and filtering, each on
different columns. First we group by the cs(referer) column to report on where traffic is coming
from. Then we group by the cs(user-agent) column to report on the type of clients accessing
our website.

Lastly, we filter on the sc-status column to return all web requests that resulted in a 404,
or file not found error. We then group by the cs-uri-stem column to report the top files that
resulted in the 404 error.

Managing IIS with PowerShell

126

A sample report of the website report is shown in the following screenshot:

There's more...
This script is far from complete and can easily be extended to return information on different
areas of network. For example, the report can be configured to report on which clients
generate the most traffic, which IP blocks are requesting the most data, and even which
content is taking the longest to return.

Managing Hyper-V with
PowerShell

In this chapter we are going to cover the following recipes:

 f Installing and configuring Hyper-V

 f Configuring NUMA

 f Securing Hyper-V

 f Hyper-V networking

 f Creating virtual machines

 f Managing VM state

 f Configuring VM networking

 f Configuring VM hardware

 f Quickly deploying VMs using a template

 f Managing and reporting on VM snapshots

 f Monitoring Hyper-V utilization and performance

 f Synchronizing networks between Hyper-V hosts

 f Hyper-V replication

 f Migrating VMs between hosts

 f Migrating VM storage between hosts

 f Using failover clustering to make VMs highly available

4

Managing Hyper-V with PowerShell

128

Introduction
Microsoft Hyper-V is a hardware virtualization platform by Microsoft that allows a single
physical machine to host multiple virtual operating systems. Hyper-V allows for more efficient
utilization of physical resources by sharing disk, network, memory, and CPU among multiple
virtual computers. Microsoft released Hyper-V 2012 in two versions: as a feature of the
standard OS, and as a free standalone Hyper-V Server. The commands in this chapter can be
performed in both environments.

In addition to basic management of Hyper-V, this chapter also covers how to automate the
deployment and management of guest virtual machines (VMs), manage VM snapshots,
migrate VMs between hosts and preparing a host for maintenance, and how to utilize
clustering to make highly available VMs. This chapter should cover everything necessary to set
up and manage an enterprise Hyper-V farm; including reporting, performing maintenance, and
monitoring performance.

Installing and configuring Hyper-V
To begin virtualizing with Hyper-V Server, the first thing we need to do is install and configure
the Hyper-V Server feature. In this recipe we will configure the physical drives used by Hyper-V.
The steps in this recipe can be used to configure the Server 2012 Standard and Datacenter
editions, as well as the free Hyper-V Server edition.

Getting ready
In this recipe we will set up and configure Hyper-V on our first server named HV01.
The operating system should already be installed on the C:\ drive and configured with
a network address. A separate disk, E:\, will be used to hold our VM and VHDx files.

To simplify management of the Hyper-V Server, the system is joined to a domain:

Chapter 4

129

How to do it...
Carry out the following steps to install and configure Hyper-V:

1. Create the folders for the VM and VHDx files.
New-Item E:\VM -ItemType Directory
New-Item E:\VHD -ItemType Directory

2. If you are not using the free Hyper-V Server, install Hyper-V role. The server will reboot
to enable the Hyper-V role:
Install-WindowsFeature Hyper-V -IncludeManagementTools -Restart

This step is only necessary if you are using a Windows Server 2012
Standard and Datacenter edition. If you are using the free Hyper-V Server
2012, the role is already installed.

3. If you are administering the server remotely, install the Hyper-V management tools on
another system. This will install both the GUI and PowerShell administration tools:
Install-WindowsFeature RSAT-Hyper-V-Tools

4. Configure Hyper-V to use the target folders:
Set-VMHost -ComputerName HV01 -VirtualHardDiskPath E:\vhd `
-VirtualMachinePath E:\vm

5. Confirm the settings by executing the following:
Get-VMHost -ComputerName HV01| Format-List *

When executed, you will see a screen similar to the following screenshot:

Managing Hyper-V with PowerShell

130

How it works...
In the first step we create the target folders that will host the VM and VHDx files. By default,
Windows stores these files at C:\ProgramData\Microsoft\Windows\Hyper-V and
C:\Users\Public\Documents\Hyper-V\Virtual Hard Disks respectively. For
performance reasons, these files should be stored separately from the OS disk. Depending
on the number of virtual machines being hosted, and the disk utilization of those VMs, a disk
array or SAN should be used.

In the second step we use Install-WindowsFeature to install the Hyper-V role on the
server and instruct it to reboot when finished. When finished, the server will automatically reboot
to complete the installation. This step is not necessary for the free Hyper-V Server edition.

In the third step we are installing the Hyper-V management tools on a remote system. This will
allow management of our Hyper-V Server without requiring us to log onto the server console.
In a production environment this is often preferred as it minimizes the overhead needed to
manage the system, and the server can be dedicated to running virtual machines.

In the fourth step we execute Set-VMhost to configure the target folders for Hyper-V. This
command uses the –ComputerName switch to reference the system HV01. This allows the
command to be executed on the Hyper-V Server remotely and non-interactively. To execute the
command locally, simply remove the switch and the task will affect the local server.

Lastly, we call Get-VMHost to confirm the configuration of the Hyper-V Server. Here we see
VirtualHardDiskPath and VirtualMachinePath are located in our new directories on
the E:\ drive.

There's more...
In this example we are using a different drive as the default location for our VMs. We are
doing this for two primary reasons: ease of management, and performance. Management is
improved by keeping all of the VM configurations and hard disks on a separate drive, and we
do not have to worry as much about day-to-day server management. Tasks such as deleting
old user profiles or old files on the OS drive, should not affect the virtual machines.

Additionally, moving the virtual disks to separate physical drives results in improved
performance by increasing the total disk capability. Additional disk spindles means more IOPs,
more throughput, and potentially faster response time. Once there are more than a few VMs
operating on the server, you will begin to see the difference multiple disks provide.

Chapter 4

131

When sizing the disks for a large VM, such as a busy SQL server, it is best
practice to begin by identifying the requirements as if it was a physical
server. Once the number, size, and performance needed for the physical
environment are identified, the same numbers can often be applied to the
virtual environment.

Configuring NUMA
In older multiprocessor systems, multiple processor clustering methods were used to provide
access to the computer resources to all processors. Most resources were easily accessed by
multiple processors, with the exception of memory.

In newer multiprocessor systems the use of Non-Uniform Memory Architecture (NUMA)
has become standard. NUMA allows for the system memory to be split between the available
processors, creating NUMA zones, with each zone owning its memory.

When a processor needs to access memory that is owned by another processor, the first
processor asks the second processor to perform the request. When this memory request
occurs, it takes slightly longer to be fulfilled because of the hand-off to the second processor.
Because the timing to fulfill memory requests changed, it is referred to as being non-uniform.

By default, NUMA spanning is enabled on Hyper-V. There are multiple reasons for disabling
NUMA and for leaving NUMA enabled. Enabling NUMA allows for operating large VMs that
require more memory than a single NUMA zone contains. Additionally, it can allow for
operating of more VMs on the system at a time.

Enabling NUMA however results in a performance impact for any VMs shared across zones.
Because accessing memory owned by a different zone takes longer than accessing local
memory, this can cause the VM performance to degrade.

Managing Hyper-V with PowerShell

132

Getting Ready
For this recipe we will be working with a server with the Hyper-V feature installed. This server
needs to have at least two physical processors for NUMA spanning to operate.

How to do it...
Execute the following commands to change the NUMA configuration:

1. Disable NUMA spanning:
Invoke-Command -ComputerName HV01 -ScriptBlock {
 Set-VMHost -NumaSpanningEnabled $false
 Restart-Service vmms
}

2. View the NUMA status:
Get-VMHost -ComputerName HV01 | Format-List *

When executed, you will see a screen similar to the following screenshot:

3. Re-enable NUMA spanning:
Invoke-Command -ComputerName HV01 -ScriptBlock {
 Set-VMHost -NumaSpanningEnabled $true
 Restart-Service vmms
}

Chapter 4

133

How it works...
In the first step we disable NUMA spanning on our server. In this instance we are managing a
remote Hyper-V Server, so we are using Invoke-Command to execute the steps on the server
HV01. First, we use Set-VMHost with the –NumaSpanningEnabled switch set to $false.
Next, we restart the Virtual Machine Management Service (VMMS) of Hyper-V for the change
to take effect.

Restarting the Virtual Machine Management Service of Hyper-V will
cause all running VMs on the server to be stopped. Depending on
your environment this may cause a service outage and should only be
performed while the system is in maintenance.

In the second step we call Get-VMHost to view the server configuration. As we can see,
the NumaSpanningEnabled switch is set to False, this confirms that our change has
taken effect.

Lastly, we re-enable NUMA spanning on our server. This process is the same as the first
step, however this time we set the –NumaSpanningEnalbed switch to $true.

See also
More information about the Non-Uniform Memory Access architecture can be found at
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access.

Securing Hyper-V
Because a Hyper-V Server may host dozens of virtual machines, properly securing the Hyper-V
Server itself is critical. In a Hyper-V Server there are two primary groups used for managing
the system: the Administrators group and the Hyper-V Administrators group that is created
when the Hyper-V feature is installed. These two groups provide full access to the Hyper-V
Server, and potentially, access to all virtual machines operating on the server.

In addition to managing the Hyper-V Server itself, administrators can use the Virtual Machine
Connection tool of Hyper-V to access the virtual machines. This tool provides the virtual
equivalent of physically accessing the system. Administrators can access the keyboard, video,
and mouse of the system, change the power state, modify the virtual hardware, and boot from
CD/DVD.

In this recipe we will cover securing the administrative functions on the Hyper-V Server and
individual virtual machines.

http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access

Managing Hyper-V with PowerShell

134

Getting ready
In this example we are securing a single Hyper-V Server in a domain environment. Following
standard Windows security practices, we will be using security groups to grant access to the
resources on the Hyper-V Server:

In this recipe we are securing our Hyper-V Server, HV01. We will add a domain group named
CORP\HyperVAdmins to the local Hyper-V Administrators group. Additionally, we will grant
VM Connect Access to the CORP\Accounting01 group.

Because we are changing permissions on the Hyper-V Server, these steps
must be executed using an account with administrative level rights.

How to do it...
Execute the following steps to secure hyper-V:

1. Add users to the Hyper-V Administrators group:
$userGroup = [ADSI]("WinNT://CORP/HyperVAdmins")
$hvComp = [ADSI]("WinNT://HV01,computer")
$hvGroup = $hvComp.PSBase.Children.Find("Hyper-V Administrators")
$hvGroup.PSBase.Invoke("Add",$userGroup.PSBase.Path)

2. View the current list of Hyper-V Administrators:
[ADSI]$userGroup = "WinNT://HV01/Hyper-V Administrators,group"
$groupMembers = $userGroup.PSBase.Invoke("Members")
$groupMembers | ForEach-Object {
 $_.GetType().InvokeMember("Name", 'GetProperty', $null, $_,
$null)
}

Chapter 4

135

3. Grant remote connect access:
Grant-VMConnectAccess -ComputerName HV01 -VMName Accounting01 `
-UserName AccountingAdmins

4. Review who has remote connect access:
Get-VMConnectAccess -ComputerName HV01 -VMName Accounting01

After executing the command, you should see something similar to the
following screenshot:

5. Revoke remote connect access:
Revoke-VMConnectAccess -ComputerName HV01 -VMName Accounting01 `
-UserName CORP\SalesAdmins

How it works...
In the first step we are using PowerShell to add a domain group to a local group on the
Hyper-V Server. The script starts by searching Active Directory for a domain group named
Corp\HyperVAdmins. This group was created to contain the administrators for all of
the Hyper-V Servers in our environment. Next, the script searches Active Directory for the
computer named HV01, and then searches within the server for a local group named Hyper-V
Administrators. Lastly, the script adds the Corp\HyperVAdmins group into the HV01\
Hyper-V Administrator group.

The default permissions restrict this task from running remotely. To
execute this function, the firewall needs to be reconfigured, or the
commands must be executed locally by logging onto the server or by
using a PSSession.

In the second step we review who has been added to the Hyper-V Administrator group on the
local server. This will allow us to confirm that the correct users have been granted permission
to our servers.

In the third step we use Grant-VMConnectAccess to grant access to the
Accounting01 virtual machine. In this situation we have a group of administrators named
AccountingAdmins, who are responsible for managing this server, and we need to provide
them access to the virtual machine.

Managing Hyper-V with PowerShell

136

In the fourth step we use Get-VMConnectAccess to query the Hyper-V Server to review who
has access to the Accounting01 virtual machine. In this situation we find that there are two
groups with connect access: SalesAdmins and AccountingAdmins. Because this server is
used by the Accounting department, we need to remove the Sales group from the server.

In the last step we use Revoke-VMConnectAccess to remove the SalesAdmins group
from the Accounting01 virtual machine.

There's more...
VMConnectAccess allows for a user to remotely connect to a virtual machine using the
Hyper-V administration tools. This allows the user to use the VM as if they were at a physical
computer. They can open the computer console, reboot the server, and load/unload ISO
media. Administrators will initially use this feature when first setting up a virtual machine
(installing the OS, configuring IP address, joining to domain, and so on) and it can be useful
for several other tasks.

Standard Windows security still applies, and the users must have
accounts to access the server. However, the ability to restart the VM
into safe mode or booting from ISOs may allow escalation of privileges.

Additionally, VMConnectAccess is not viewable or configurable via the Hyper-V administrative
console. To grant, revoke, or view access, PowerShell must be used.

Hyper-V networking
In Hyper-V there are three types of network switches available: external, internal, and private.
External network switches are tied to physical network adapters on the Hyper-V Server and
they allow systems on the network to access remote systems and services. Internal network
switches allow VMs on the Hyper-V Server to communicate with each other, and the Hyper-V
Server itself. Private network switches allow VMs on the Hyper-V Server to communicate with
each other, but not to the Hyper-V Server or outside of the Hyper-V server.

Getting ready
In this recipe we will be setting up the networks for an NLB cluster on our Hyper-V Server.
To accomplish this, we will be creating three networks: production, management, and NLB
Comm. The production network is an external network attached to a physical network adapter
on the Hyper-V Server and it provides access to the Corp environment. The NLB Comm
network is a private network used for intra-NLB communication. Lastly, the management
network is an internal network that will be used for out-of-band management of the VMs on
the server.

Chapter 4

137

For this recipe we need a Hyper-V Server configured similar to the Installing and configuring
Hyper-V recipe.

How to do it...
Carry out the following steps to set up the Hyper-V networks:

1. List the adapters on the Hyper-V Server and identify the name of the interface to
connect the external network:
$cim = New-CimSession -ComputerName HV01
Get-NetAdapter -CimSession $cim

When completed, the physical interfaces will be listed as shown in the
following screenshot:

2. Create the external network on the Hyper-V Server and attach it to the
Ethernet interface:
New-VMSwitch -ComputerName HV01 -Name "Production" `
-NetAdapterName "Ethernet"

3. Create the internal network on the Hyper-V Server for management of the VMs:
New-VMSwitch -ComputerName HV01 -SwitchType Internal -Name
Management

Managing Hyper-V with PowerShell

138

4. Create the private network on the Hyper-V Server:
New-VMSwitch -ComputerName HV01 -SwitchType Private -Name "NLB
Comm"

5. View all of the networks on the Hyper-V Server:
Get-VMSwitch -ComputerName HV01

When executed, the virtual switches will be displayed as shown in the
following screenshot:

How it works...
The first step in creating our Hyper-V networks is to identify which network interfaces exist on
the Hyper-V Server and their names. In this example, we use New-CimSession to connect
remotely to our Hyper-V Server and then call Get-NetAdapter to list the network adapters.
In this example, we have two interfaces available: Ethernet and Ethernet 3.

Once we have identified the physical network adapters, we use New-VMSwitch to create
our first Hyper-V network. The first network we create is our production network, which is
our external network. We use the –NetAdapterName switch with the name of our desired
physical adapter to provide access to the external network.

In third and fourth step we create the internal and private networks by using the –
SwitchType switch.

The -SwitchType switch is only used when creating internal or private
networks. If this switch is not included, the switch is assumed to be an
external switch.

In the last step we use Get-VMSwitch to list out the switches that have been created on the
Hyper-V Server.

There's more...
External and internal switches have an additional option to allow or disallow the Hyper-V
Server from using a network. For instance, with this setting on an external switch, both the
VMs and Hyper-V Server can use the same network interface. To enable or disable the setting,
use the Set-VMSwitch command and specify the –AllowManagementOS switch:

Chapter 4

139

Set-VMSwitch -ComputerName HV01 -name Production -AllowManagementOS
$false

By default, AllowManagementOS is enabled for external switches
and disabled for internal switches

Creating virtual machines
Once our Hyper-V Server environment is built and configured, we can begin hosting virtual
machines on it. Creating VMs using the Hyper-V admin console is quick and easy if you only
need to create two or three VMs. However, if you need to create more, or need to ensure the
configurations remain the same, then PowerShell is the ideal tool.

In this recipe we will create and configure a new virtual machine on our Hyper-V Server.

Getting ready
For this recipe we need a functioning Hyper-V Server similar to the Hyper-V networking recipe
in this chapter.

How to do it...
Carry out the following steps to create a new virtual machine:

1. Create the new virtual machine:
New-VM -ComputerName HV01 -Name Accounting02 -MemoryStartupBytes
512MB `
-NewVHDPath "e:\VM\Virtual Hard Disks\Accounting02.vhdx" `
-NewVHDSizeBytes 100GB -SwitchName Production

2. Configure the system for dynamic memory:
Set-VMMemory -ComputerName HV01 -VMName Accounting02 `
-DynamicMemoryEnabled $true -MaximumBytes 2GB

3. Review the virtual machine configuration:
Get-VM -ComputerName HV01 -Name Accounting02 | Format-List *

Managing Hyper-V with PowerShell

140

When executed, the virtual machine configuration is displayed similar to the
 following screenshot:

How it works...
The first step uses the New-VM command to create a virtual machine on the Hyper-V Server
HV01. Here we create a new VM named Accounting02. Multiple switches are used to define
the various aspects of the virtual machine:

 f MemoryStartupBytes defines the guaranteed minimum memory resources when
the system is switched on

 f NewVHDPath defines the name and location Hyper-V should create in the VHDx file
for the VM

 f NewVHDSizeBytes defines the size of the hard disk for the VM

 f SwitchName defines the networking switch for the VM

Some PowerShell switches, such as MemoryStartupBytes, accept
values presented as Bytes. However, PowerShell is capable of
automatically calculating the Byte equivalent when a value is passed as
KB, MB, GB, or TB.
For instance, here we specify MemoryStartupBytes as 512 MB,
which is shorthand for 536,870,912 bytes.

Chapter 4

141

Once the virtual machine is created, we then use Set-VMMemory to configure the virtual
machine to use dynamic memory. Dynamic memory allows Hyper-V to increase or decrease
the memory used by a VM as needed. In this instance we enable dynamic memory and specify
the maximum amount of memory to allocate is 2 GB.

Lastly, we execute Get-VM to list the VM properties. Here, we can view the memory
configuration to confirm that DynamicMemoryEnabled is set to true, the MemoryMinimum
is configured to guarantee a minimum of 512 MB of RAM, and that MemoryMaximum allows
the VM to burst up to 2 GB of RAM if needed.

Managing VM state
Scripting the state of virtual machines allows us to quickly and easily manage all of the
virtual machines in your environment. This will allow us to power systems on or off individually,
as a group, or as a job that occurs automatically based on the time of day, or triggered by
external processes.

Getting ready
In this recipe we will be working with the Accounting02 virtual machine created in the
Creating virtual machines recipe.

How to do it...
Carry out the following steps to manage VM state:

1. View the current virtual machine state:
Get-VM -ComputerName HV01 -Name Accounting02

When executed, you should see a screen similar to the following screenshot:

Managing Hyper-V with PowerShell

142

2. Power on the virtual machine:
Start-VM -ComputerName HV01 -Name Accounting02

When executed, you can call Get-VM again to confirm the change:

3. Suspend the virtual machine:
Save-VM -ComputerName HV01 -Name Accounting02

When executed, you can call Get-VM again to confirm the change:

4. Resume the virtual machine:
Start-VM -ComputerName HV01 -Name Accounting02

5. Shut down the virtual machine:
Stop-VM -ComputerName HV01 -Name Accounting02

6. Power off the virtual machine:
Stop-VM -ComputerName HV01 -Name Accounting02 -TurnOff

How it works...
Managing the state of virtual machines in Hyper-V is relatively easy.

In the first step we are using Get-VM to view the state of the Accounting02 virtual machine
on the Hyper-V Server HV01. The results confirm that the VM is currently powered off and not
consuming any resources.

Chapter 4

143

In the second step we call Start-VM to power on the virtual machine. This is the virtual
equivalent of powering on a physical server. When started, our VM will power on, progress
through the BIOS, boot from the defined media, and load the operating system. We can then
call Get-VM again to confirm the VM is powered on and consuming CPU and memory.

In the third step we are using Save-VM to suspend our virtual machine. Saving the VM is
similar to suspending or hibernating a laptop computer. When this occurs, all activity on the
computer is suspended, and the contents of memory are written to disk to be accessed later.
When we call Get-VM, we see that the state of the VM is Saved, meaning we can resume it at
a later time without losing information.

In the fourth step we are using Start-VM to resume our VM from its saved state. Because
the system state and contents of memory are saved on disk, the VM is quickly resumed to an
operational state, instead of performing the full boot and startup process.

Next, we use Stop-VM to shut down the virtual machine. This process will attempt to use the
Hyper-V integration tools to perform a clean shutdown and switch off from within the guest
OS. If the tools are not available for some reason, the command will prompt you to forcibly
switch off the server.

Lastly, we use Stop-VM with the –Turnoff switch to switch off the virtual machine. This
is the virtual equivalent of removing the power cord from the system and all processing will
cease. This should only be performed as a last step as an unclean shutdown may cause loss
of data or corruption of files.

There's more...
Using Save-VM and Start-VM is a great method to allow for maintenance tasks on Hyper-V
Servers. For instance, let's assume we need to install a new network adapter in your Hyper-V
Server and we need to accomplish this with minimal downtime to the guest VMs. Because
we are changing the hardware of the Hyper-V Server, we will need to switch off the server,
however with these tools, we don't have to shut down the VMs.

In this scenario we can use Save-VM to pause the running VMs and save their state to disk.
Once all the VMs are saved, we can shutdown the host and perform the necessary work.
When finished, call Start-VM to return the VMs to their prior state. No shutdown of the VM
is needed and the running configuration should be the same as before.

Some applications do not work well when they are paused in this
manner. Additionally, some applications are picky about resource
availability, and the save/start order is important for the process to
work properly.

Managing Hyper-V with PowerShell

144

Configuring VM networking
One of the many features that virtualization provides is the ability to easily change the
configuration of a virtual machine. Changes to physical servers often require purchases of
additional hardware, downtime of the server to install and reconfigure the hardware, and
possibly running of new cables to provide networking, fiber channel, or additional capabilities
to the server.

The flexibility of Hyper-V networking minimizes the amount of effort needed to make many
of these changes. With Hyper-V, virtual NICs can be added or removed, network destinations
can be changed, and Virtual LANs (VLANs) can be configured. These abilities allow for a more
agile environment that can change as business needs change, security requirements update,
or troubleshooting requires.

Getting ready
In this recipe we will add a new virtual NIC to our Accounting02 VM from the Creating virtual
machines recipe and configure it to operate on an additional network. This new network
uses a virtual switch named Extranet and will utilize a VLAN to separate the traffic for the
systems of the accounting department.

How to do it...
Carry out the following steps to configure VM networking:

1. Open PowerShell and add a new virtual NIC to the VM:
Add-VMNetworkAdapter -ComputerName HV01 -VMName Accounting02 `
-SwitchName Extranet

The target virtual machine must be switched off to add a
networker adapter.

Chapter 4

145

2. Change the VLAN on the new virtual NIC:
Get-VMNetworkAdapter -ComputerName HV01 -VMName Accounting02 | `
Where-Object SwitchName -eq 'Extranet' | Set-VMNetworkAdapterVlan
`
-Access -VlanId 9

3. Review the virtual NIC configuration:
Get-VMNetworkAdapter -ComputerName HV01 -VMName Accounting02
Get-VMNetworkAdapter -ComputerName HV01 -VMName Accounting02 | `
Get-VMNetworkAdapterVlan

When executed, you should see something similar to the following screenshot:

How it works...
In the first step we use Add-VMNetworkAdapter to create a new virtual adapter on our
virtual machine. Here, we configure the adapter to be attached to the virtual switch named
Extranet.

In the second step we query our virtual machine to list the current network adapters. We filter
this list for an adapter attached to the Extranet switch to find the NIC we just created. Finally,
we use Set-VMNetworkAdapterVLAN to configure the adapter to use VLAN number 9.

Managing Hyper-V with PowerShell

146

In the third step we call Get-VMNetworkAdapter to review our configuration. We call
this command twice. First to view our adapters and confirm they are attached to the
correct switches. We call Get-VMNetworkAdapter again to pipe the results into
Get-NetworkAdapterVlan to confirm the VLAN configuration for the new NIC is correct.

There's more...
It is also possible to reassign the switch a network adapter is attached to. If instead of
creating a second adapter, we simply wanted to reassign the adapter, the following commands
would have worked:

Get-VMNetworkAdapter -ComputerName HV01 -VMName Accounting01 `
-Name "Network Adapter" | Connect-VMNetworkAdapter `
-SwitchName Extranet
Get-VMNetworkAdapter -ComputerName HV01 -VMName Accounting02 | `
Where-Object SwitchName -eq 'Extranet' | Set-VMNetworkAdapterVlan `
-Access -VlanId 9

In this example we begin by getting a reference to the adapter object on our virtual machine.
Once we have the adapter, we call Connect-VMNetworkAdapter to reassign the adapter to
the extranet switch. We then also call Set-VMNetworkAdapterVLAN to assign the correct
VLAN to our adapter.

Configuring VM hardware
Occasionally, you will find that the initial configuration for a virtual machine needs to change
to continue to support its role. Sometimes this is because the hardware is undersized and
needs to be increased to meet the needs. Other times this is because the hardware is too big
and needs to be decreased to free up resources for other VMs.

Getting ready
In this example we will be reconfiguring the hardware of our Accounting02 virtual machine
from the Creating virtual machines recipe. Specifically, we will be changing the memory
configuration, adding additional hard drives, and changing the number of virtual CPUs on
the VM.

Most of these commands can only be performed while
the VM is switched off.

Chapter 4

147

How to do it...
Carry out the following steps to update the virtual hardware:

1. Change the memory configuration to increase the available RAM:
Set-VMMemory -ComputerName HV01 -VMName Accounting02 -StartupBytes
1GB

2. Enable dynamic memory on the VM:
Set-VMMemory -ComputerName HV01 -VMName Accounting02 `
-DynamicMemoryEnabled $true -MaximumBytes 2GB -MinimumBytes 128MB
`
-StartupBytes 1GB

3. Add an additional IDE hard disk:
New-VHD -ComputerName HV01 `
-Path "E:\vm\Virtual Hard Disks\Accounting02_1.vhdx" `
-SizeBytes 50GB –Dynamic
Add-VMHardDiskDrive -ComputerName HV01 -VMName Accounting02 `
-Path "E:\vm\virtual hard disks\Accounting02_1.vhdx"

4. Change the number of virtual CPUs:
Set-VMProcessor -ComputerName HV01 -VMName Accounting02 -Count 4

How it works...
In this recipe we begin by configuring the memory on our virtual machine. In the first step we
are using Set-VMMemory to change the amount of RAM available to the VM and setting it to
1 GB.

In the second step we use Set-VMMemory again to change the memory configuration and
enable dynamic memory. Dynamic memory allows Hyper-V to add and remove memory to a
running VM based on the current need and available resources on the server. In this situation
we also configure the MinimumBytes and MaximumBytes memory values for use with
dynamic memory, as well as the guaranteed amount of memory available when the VM is
switched on.

In the third step we are creating a new hard disk and attaching it to our virtual machine. We
start by calling New-VHD to create a new VHDx file on the Hyper-V Server. Next, we use Add-
VMHardDiskDrive to attach the disk as an IDE drive to the VM.

Managing Hyper-V with PowerShell

148

In addition to IDE drives, we can also attach the disk as a SCSI
drive. To accomplish this, we use the –ControllerType and
–ControllerNumber switches to define the disk as SCSI and
which controller to use.

In the fourth step we are using Set-VMProcessor to change the number of virtual
processors on the virtual machine.

Quickly deploying VMs using a template
Creating new virtual machines in Hyper-V is a relatively simple and automatable process,
however the installation of an operating system on the VM can still take an extended period of
time. Existing automated deployment tools help in the installation process, but most are slow
and can be improved in a virtual environment.

Getting ready
In this recipe we will be using a VM with a basic installation of Server 2012 named
Server2012_template:

1. Create a new VM using the steps in the Creating virtual machines recipe.

2. Install the Windows operating system on the new VM.

3. Execute C:\Windows\System32\Sysprep\Sysprep.exe.

4. Select Enter System Out-of-Box Experience (OOBE), Generalize, and Shutdown:

5. Click on OK to reconfigure and switch off the VM.

Chapter 4

149

How to do it...
Complete the following steps to deploy a VM from the template:

1. Open PowerShell and create the new VHDx file:
New-VHD -ComputerName HV01 `
-ParentPath 'E:\vm\Virtual Hard Disks\Server8_template.vhdx' `
-Path 'E:\vm\Virtual Hard Disks\Test01.vhdx'

2. Create the new VM and attach the VHDx file:
New-VM -ComputerName HV01 -Name Test01 `
-VHDPath 'E:\vm\Virtual Hard Disks\Test01.vhdx' -SwitchName
Production

3. Configure the VM memory as dynamic:
Set-VMMemory -ComputerName HV01 -VMName Test01 `
-DynamicMemoryEnabled $true -MaximumBytes 2GB

4. Start the VM:
Start-VM -ComputerName HV01 -Name Test01

How it works...
The recipe starts by using New-VHD to create a new virtual hard disk. Specifically, we are
using the –ParentPath switch to create a differencing hard disk. This disk configuration
is unique in the virtual machine. It will initially perform all reads from the parent disk and
the child/destination disk will be empty. All writes or changes will be sent to the child disk,
and then any reads for the new or changed blocks will come from the child disk.

In the second step we call New-VM to create a new VM named Test01. While creating the
VM we use the –VHDPath switch to use the virtual hard disk we just created.

In the third step we use Set-VMMemory to configure the memory on our VM. In this instance
we are configuring the VM for dynamic memory and a maximum value of 2 GB.

Lastly, we call Start-VM to start the virtual machine on the Hyper-V host. The VM will switch
on, finalize the system preparation process, and prompt you for the administrator password,
and then be available for logon.

Managing Hyper-V with PowerShell

150

There's more...
This type of VM deployment is ideal for a test lab or virtual desktop environment. This
allows for quickly deploying multiple similar systems and having them operational with
minimal user impact. Because the environment is quick and easy to deploy, you can
also delete the systems when no longer using them, and redeploy them when needed.
Assuming your environment uses network storage for user data, there should not be any
possibility of losing information between rebuilds.

One thing to note in this configuration is that the template disk is used by all VMs that were
deployed from the template. This single VHDx file can result in a performance bottleneck if
the backend disks are not sized properly. If performance issues appear, you should look at
the utilization of the template disk and potentially move it to a faster disk subsystem.

See also
More information about using SysPrep can be found at http://technet.microsoft.
com/en-us/video/creating-an-install-image-with-sysprep-in-windows-
server-2012.

More information about Hyper-V disk types can be found at http://blogs.technet.
com/b/yungchou/archive/2013/01/23/hyper-v-virtual-hard-disk-vhd-
operations-explained.aspx.

Managing and reporting on VM snapshots
One of the greatest features when using virtualization is the ability to use snapshots.
Snapshots allow for a virtual machine state and configuration to be captured and then
later, rolled back to undo any changes. This is a great method to test our changes on virtual
machines, by snapshotting the VM prior to making the change, it can be rolled back if the
result is undesired.

Getting ready
In this recipe we will be working with our Accounting02 virtual machine created in the
Creating virtual machines recipe.

In this fictional scenario we have an application team that is planning to make two different
sets of changes to our VM. In order to facilitate troubleshooting and recovery, we will be
creating several snapshots of the VM before and during the activity. If needed, we will rollback
the snapshots to a working condition.

http://technet.microsoft.com/en-us/video/creating-an-install-image-with-sysprep-in-windows-server-2012
http://technet.microsoft.com/en-us/video/creating-an-install-image-with-sysprep-in-windows-server-2012
http://blogs.technet.com/b/yungchou/archive/2013/01/23/hyper-v-virtual-hard-disk-vhd-operations-explained.aspx
http://blogs.technet.com/b/yungchou/archive/2013/01/23/hyper-v-virtual-hard-disk-vhd-operations-explained.aspx

Chapter 4

151

How to do it...
Complete the following steps to manage and report on VM snapshots:

1. Create a snapshot prior to any work occurring on the VM:
Checkpoint-VM -ComputerName HV01 -VMName Accounting02 `
-SnapshotName "First Snap"

2. Allow the application team to perform their first set of changes.

3. Once the application team is done with the first set of changes, create
another snapshot:
Checkpoint-VM -ComputerName HV01 -VMName Accounting02 `
-SnapshotName "Second Snap"

4. When finished, review the snapshots for the VM:
Get-VMSnapshot -ComputerName HV01 -VMName Accounting02

When executed, we will see an output similar to the following screenshot:

5. Allow the application team to perform their second set of changes.

6. The application team requests to rollback the last change:
Restore-VMSnapshot -ComputerName HV01 -VMName Accounting02 `
-Name "Second Snap" -Confirm:$false

7. Remove all snapshots for the VM:
Remove-VMSnapshot -ComputerName HV01 -VMName Accounting02 -Name *

How it works...
Prior to any work being performed on our virtual machine, we use Checkpoint-VM to
create a snapshot of the virtual machine. This captures the state of the virtual machine as a
snapshot named First Snap and will allow for a rollback to a known working state.

Managing Hyper-V with PowerShell

152

In the second step we alert the application team the snapshot is complete and they can
proceed with their changes. Once the first set of changes is complete, we then create another
snapshot named Second Snap. This provides for a second rollback point, allowing us to later
choose between no changes and some changes.

In the fourth step we use Get-VMSnapshot to list the snapshots for the virtual machine. As
we can see from the output we have our two snapshots. If you notice the column on the right,
ParentSnapshotName, you will see that the snapshots use a parent-child relationship to
minimize the resources each snapshot requires.

In the sixth step we use Restore-VMSnapshot to rollback the last set of changes
performed. This rollback process not only rolls back any file changes to the system, but also
any changes to memory contents and power state.

When restoring a snapshot, the snapshots still remain, only the contents
of the running VM are reset. Once finished working with the snapshots,
we will still need to remove the snapshots.

In the last step we use Remove-VMSnapshot to delete all of the snapshots for this virtual
machine. This process merges all of the changes that occurred between the snapshots and
the current state into the source hard disk. If a large number of changes occurred, the merge
process may take a while to complete.

There's more...
It is possible to export the contents of a VM snapshot from Hyper-V. This export can then be
reimported later or imported onto another Hyper-V Server and then operate as a new system.

Export-VMSnapshot -ComputerName HV01 -VMName Accounting02 `
-Name "First Snap" "E:\vm\export\"

This command creates a temporary merged copy of the original VM and the snapshot is
changed. The merged copy is then exported to the target folder. The export can then be
imported into Hyper-V to replace the current VM or as a new VM.

Chapter 4

153

Monitoring Hyper-V utilization and
performance

Monitoring the performance and utilization of Hyper-V Server is a key component of ensuring
your virtual environment is running properly. By monitoring you Hyper-V environment, you can
identify VMs that are using more resources than expected, and when your environment needs
additional resources.

Getting ready
This recipe will utilize the built-in Hyper-V performance counters to report on system
utilization. This will report on the resources being used by each virtual machine and allow
easy identification of problem systems. In this recipe we will be reporting on the CPU
resources being used by the individual virtual machines.

For this example we will only be monitoring four performance counters related to the Hyper-V
virtual CPUs shown as follows. Additional counters can be added to track memory, disk, and
network utilization as well:

 f Hyper-V HyperVisor Virtual Processor\% Guest Run Time

 f Hyper-V HyperVisor Virtual Processor\% Hypervisor Run Time

 f Hyper-V HyperVisor Virtual Processor\% Remote Run Time

 f Hyper-V HyperVisor Virtual Processor\% Total Run Time

In this example we are requesting the data from a remote system.
Appropriate firewall rules must be applied to allow remote
performance monitoring.

Managing Hyper-V with PowerShell

154

How to do it...
Carry out the following steps to manage the Hyper-V utilization and performance:

1. Open Performance Monitor by going to the Start menu and typing Perfmon.

2. On the Performance Monitor tab click on the green + button to select
additional counters:

3. Under Select counters from computer, enter the name of your Hyper-V server
and hit Enter.

Chapter 4

155

4. On the Add-Counters page browse the Hyper-V counters and identify the counters
to report on:

5. Create the counter array and query the Hyper-V Server:
$myNodes = "HV01","HV02"
$myCounter = $myNodes | ForEach-Object {
 "\\$_\Hyper-V Hypervisor Virtual Processor(*)\% Guest Run
Time"
 "\\$_\Hyper-V Hypervisor Virtual Processor(*)\% Hypervisor Run
Time"
 "\\$_\Hyper-V Hypervisor Virtual Processor(*)\% Remote Run
Time"
 "\\$_\Hyper-V Hypervisor Virtual Processor(*)\% Total Run
Time"
}
Get-Counter -Counter $myCounter

6. Select and format the data into a usable form:
$counterResults = Get-Counter -Counter $myCounter
$counterResults.CounterSamples | `
select @{
 Name="VM"; Expression={
 if($_.InstanceName.Contains(":")){
 $_.InstanceName.Substring(0,$_.InstanceName.
IndexOf(":"))
 } else {
 $_.InstanceName
 }
 }

Managing Hyper-V with PowerShell

156

}, InstanceName, @{ Name="Counter"; Expression={ $_.Path.
Substring(`
$_.Path.LastIndexOf("\")+1) } }, CookedValue | `
Sort-Object VM, Counter, InstanceName | `
Format-Table -Property VM, Counter, InstanceName, CookedValue

When executed, you should see a performance report similar to the
following screenshot:

How it works...
In the first few steps we are using Windows Performance Monitor to review the available
performance counters on our Hyper-V Server. The Hyper-V role installs dozens of performance
counters providing information on the Hyper-V Server, the guest operating systems, CPU,
memory, networking, and even remote connections. In the fourth step we identify the Virtual
CPU counters we wish to monitor.

In the fifth step we start by creating an array of our Hyper-V Server named $myNodes. This
can be a single server, or an array of multiple servers. We pipe the server names into a
ForEach-Object loop to assign our server names to our identified counters. These counters
are then saved as an array named $myCounter. Lastly, we call Get-Counter to query our
Hyper-V Server.

Chapter 4

157

Lastly, we sort the data to a format that is more easily viewed. We start by calling
Get-Counter to query the performance counters and save the output into a variable
$counterResults. We then pipe $counterResults into a Select-Object statement
that returns the name of the VM, the counter and instance information, and the value. This
information is then passed into Sort-Object and Format-Table to order the information
and make it more usable.

As we can see from the results, the commands report on the CPU resources used by each
virtual CPU on the system, as well as the total resources used for the entire system.

There's more...
In this example we have reported only on the CPU resources of a virtual machine, but this
script can be expanded to monitor other components as well. Each virtual machine also
has performance counters for memory utilization, disk access, and network utilization.
Additionally, the Hyper-V Server itself can be monitored for total CPU, disk, network, and
memory utilization to ensure the system is not running out of resources.

Synchronizing networks between
Hyper-V hosts

When managing multiple Hyper-V Servers simultaneously, it is often best to keep the server
configurations similar. This allows for easier management of the servers, as well as enabling
portability of the virtual machines between the Hyper-V Servers. In this recipe we will
synchronize the networking configuration between Hyper-V Servers.

Getting ready
To perform this recipe we will need two Hyper-V Servers with similar hardware configurations.
We are assuming that the physical servers are configured similarly, specifically, with respect to
the number, naming, and purpose of the network adapters.

How to do it...
Carry out the following steps to synchronize networks between Hyper-V hosts:

1. Open PowerShell and collect information on the Private and Internal switches:
$HV01Switch = Get-VMSwitch -ComputerName HV01 -SwitchType Private,
Internal
$HV02Switch = Get-VMSwitch -ComputerName HV02 -SwitchType Private,
Internal

Managing Hyper-V with PowerShell

158

2. Compare the switches and create new switches wherever necessary:
$HV01Switch | Where-Object {$HV02Switch.Name -NotContains $_.Name}
| `
ForEach-Object{ New-VMSwitch -ComputerName HV02 -Name $_.Name `
-SwitchType $_.SwitchType }
$HV02Switch | Where-Object {$HV01Switch.Name -NotContains $_.Name}
| `
ForEach-Object{ New-VMSwitch -ComputerName HV01 -Name $_.Name `
-SwitchType $_.SwitchType }

3. Compare and create External switches wherever necessary:
$HV01Switch = Get-VMSwitch -ComputerName HV01
$HV02Switch = Get-VMSwitch -ComputerName HV02
$HV01Switch | Where-Object {$HV02Switch.Name -NotContains $_.Name}
| `
ForEach-Object{
 IF($_.SwitchType -eq "External"){
 New-VMSwitch -ComputerName HV02 -Name $_.Name
-NetAdapterName `
 (Get-NetAdapter -CimSession (New-CimSession -ComputerName
HV01) | `
 Where-Object InterfaceDescription -eq `
 $_.NetAdapterInterfaceDescription).Name
 }
}
$HV02Switch | Where-Object {$HV01Switch.Name -NotContains $_.Name}
| `
ForEach-Object{
 IF($_.SwitchType -eq "External"){
 New-VMSwitch -ComputerName HV01 -Name $_.Name
-NetAdapterName `
 (Get-NetAdapter -CimSession (New-CimSession -ComputerName
HV02) | `
 Where-Object InterfaceDescription -eq `
 $_.NetAdapterInterfaceDescription).Name
 }
}

How it works...
In the first step we are using Get-VMSwitch to retrieve the switch configurations on the
Hyper-V Servers. This is retrieving the Private and Internal switches on both Hyper-V
hosts and placing them into arrays.

In the second step we are comparing the two arrays with each other. We start by comparing
the virtual switches on HV01 against HV02. For each virtual switch that exists on the first
server, but not the second, we call New-VMSwitch to create the switch on the host. We then
reverse the process and create switches on HV01.

Chapter 4

159

In the third step we requery the Hyper-V servers for all switches. We start by comparing the
virtual switches on HV01 against HV02. If a switch exists on HV01 but not on HV02, it is
created and attached the external interface based on the interface description. The process is
then reversed to synchronize the virtual switches on the initial Hyper-V host.

Hyper-V replication
Hyper-V Server provides a built-in replication technology for dealing with planned and
unplanned system failures. The replica technology allows for a virtual machine to be
replicated from a source Hyper-V Server to a target Hyper-V Server and constantly kept up-
to-date. In case of an outage the target VM can be switched on with minimal data loss. This
replication works well within the same datacenter, as well as between different datacenters.

In this recipe we will set up a VM to be replicated between Hyper-V hosts and test failover.

Getting ready
To perform this recipe we will need a minimum of two Hyper-V Servers, each with their own
storage. A virtual machine will operate on the first Hyper-V Server and it will be replicated to
the second server as shown in the following diagram. We will perform failover tests to confirm
the failover process operates as expected:

How to do it...
Carry out the following steps to configure replication:

1. Open Active Directory Users and Computers (dsa.msc) and open the computer
properties of the Hyper-V Server HV01.

Managing Hyper-V with PowerShell

160

2. On the Delegation tab, select Trust this computer for delegation to any service and
click on OK:

3. Reboot the server HV01 for the changes to take effect.

4. Configure the server HV02 as a Hyper-V replica server:
Invoke-Command -ComputerName HV02 -ScriptBlock{
 Enable-Netfirewallrule `
 -DisplayName "Hyper-V Replica HTTP Listener (TCP-In)"
 Set-VMReplicationServer -ReplicationEnabled $true `
 -AllowedAuthenticationType Kerberos `
 -KerberosAuthenticationPort 10000 `
 -DefaultStorageLocation "E:\vm" `
 -ReplicationAllowedFromAnyServer $true
}

Chapter 4

161

5. Configure the virtual machine VM01 on HV01 as a replica source:
Invoke-Command -ComputerName HV01 -ScriptBlock{
 Enable-VMReplication -VMName "VM1" `
 -ReplicaServerName "HV02.corp.contoso.com" `
 -ReplicaServerPort 10000 -AuthenticationType Kerberos `
 -CompressionEnabled $true -RecoveryHistory 5
}

6. Begin replication:
Invoke-Command -ComputerName HV01 -ScriptBlock{
 $PrimaryVM1 = "VM1"
 Start-VMInitialReplication –VMName $PrimaryVM1
}

7. Monitor replication status:
Measure-VMReplication -ComputerName HV01

When executed, the results will be returned similar to the following screenshot:

8. Once the replication is finished, we can perform a failover test:
Invoke-Command -ComputerName HV02 -ScriptBlock{
 $TestReplicaVM1 = Start-VMFailover -AsTest -VMName "VM1" `
 –Confirm:$false
 Start-VM $TestReplicaVM1
}

9. Stop the failover test:
Invoke-Command -ComputerName HV02 -ScriptBlock{
 Stop-VMFailover –VMName "VM1"
}

10. Perform a planned failover:
Invoke-Command -ComputerName HV01 -ScriptBlock{
 Stop-VM "VM1"
 Start-VMFailover -VMName "VM1" -Prepare –Confirm:$false
}
Invoke-Command -ComputerName HV02 -ScriptBlock{

Managing Hyper-V with PowerShell

162

 Start-VMFailover -VMName "VM1"
 Set-VMReplication -Reverse -VMName "VM1"
 Start-VM "VM1"
}

How it works...
In the first three steps we enable delegation on server HV01. When performing activities on a
system, normally Kerberos authentication restricts how many systems, or hops, can be used. By
enabling delegation, we are allowing the Hyper-V Server to use our credentials when accessing
remote systems. This will allow the server to securely replicate with the target server.

In the fourth step we use Invoke-Command to connect to server HV02 in order to configure
it as the replica target. We begin by calling Enable-NetFirewallRule to allow Hyper-V
replication via HTTP. Then we use Set-VMReplicationServer to configure the server as
the replication target. Authentication between the Hyper-V Servers is Kerberos operating over
port 10000 (any port can be configured here). We configure the replica target location as E:\
VM and allow replication from any source server.

In the fifth step we connect to the server HV01 to configure our VM as the replica source. We
call Enable-VMReplication and identify VM1 as our source virtual machine and HV02 as
the target Hyper-V Server. Authentication is configured and network compression is enabled.
Lastly, replication is configured to keep the last five copies on the target server.

In the sixth and seventh steps we initiate and monitor the replication. The initial replication
process is started by calling Start-VMIninitialReplication and copies the entire
source virtual machine to the target Hyper-V Server. Depending on the size of the virtual
machine and the speed of the connection between the servers, this initial synchronization can
take a while. We then use Measure-VMReplication to monitor the replication status.

In the eighth step we use Start-VMFailover with the –AsTest switch to perform a test
of the failover process on the replica server. The failover test creates a copy of the VM on the
replica server. This test VM is renamed and disconnected from the network. We then start the
failover virtual machine and can access it via the Hyper-V console, or attach it to a network.
When finished, we call Stop-VMFailover to stop the failover test and remove the copy of
the VM.

Lastly, we perform a full failover of the VM to the target Hyper-V Server. This process starts by
calling Stop-VM to stop the virtual machine on HV01 and then Start-VMFailover begins
the failover process. By starting the failover process on the source server, we ensure that all
changes are replicated to the target server before additional steps are performed. On the
target server we call Start-VMFailover to finish the failover process and start the VM.

In addition to failing over the virtual machine, we also call Set-VMReplication in order to
configure VM replication to occur in reverse, or from HV02 to HV01. This will then allow us to
fail back to the initial server in the future.

Chapter 4

163

To fail back, we will need to repeat the first and second
steps on the alternate server.

See also
More information about Kerberos Delegation and Hyper-V can be found at http://blogs.
technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-
constrained-delegation-for-hyper-v-management.aspx.

Migrating VMs between hosts
Hyper-V uses a process known as Live-Migration to migrate virtual machines between Hyper-V
Servers without requiring downtime. The process utilizes shared storage (fiber channel, iSCSI,
or CIFS) to host the virtual machines, and then copies the running VM process from one
server to the other.

Getting ready
In this recipe we will be using a CIFS share to host our virtual machines. This allows us
to keep a centralized store of virtual machines and easily share between the hosts.
Additionally, this works using traditional Ethernet technology and doesn't require an
expensive storage infrastructure:

Due to Kerberos Delegation restrictions, you must be actively logged on
to the server initiating the VM migration tasks. Otherwise, an error will be
returned regarding insufficient permissions on the CIFS share or Hyper-V
Server.

http://blogs.technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-constrained-delegation-for-hyper-v-management.aspx
http://blogs.technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-constrained-delegation-for-hyper-v-management.aspx
http://blogs.technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-constrained-delegation-for-hyper-v-management.aspx

Managing Hyper-V with PowerShell

164

How to do it...
Carry out the following steps to migrate VMs between hosts:

1. Create an SMB share on your file server. Ensure the Hyper-V Servers have full control
access to the share and filesystem:
New-SmbShare -Name VMs -Path E:\Shares\VMs -FullAccess Everyone

2. Open Active Directory Users and Computers (dsa.msc) and open the computer
properties of the Hyper-V Server HV01.

3. On the Delegation tab, select Trust this computer for delegation to any service and
click on OK:

4. Reboot the server HV01 for the changes to take effect.

5. Repeat steps 2-4 for server HV02.

Chapter 4

165

6. Log on to HV01 and create a virtual machine on the CIFS share:
New-VM -Name VM1 -MemoryStartupBytes 512MB -Path "\\CIFS1\VMs\VM1"
`
-NewVHDPath "\\CIFS1\VMs\VM1.vhdx" -NewVHDSizeBytes 100GB `
-SwitchName Production

7. Switch on and configure the new virtual machine.

8. Enable the Hyper-V Servers for live migration:
Set-VMHost -ComputerName HV01,HV02 -UseAnyNetworkForMigration
$true `
-VirtualMachineMigrationAuthenticationType Kerberos
Enable-VMMigration -ComputerName HV01,HV02

9. Review the Hyper-V Server settings:
Get-VMHost -ComputerName HV01 | Format-List *

When executed, you will see output similar to the following screenshot:

10. Migrate the VM to HV02:
Move-VM -Name VM1 -DestinationHost HV02

How it works...
We start the process by configuring the environment to support live migration. First, we use
New-SMBShare to create a share on our file server and enable full control access to the
Everyone group. This will provide sufficient permissions to our Hyper-V Servers.

Next, we enable delegation for both of our Hyper-V Servers. This delegation is needed to pass
our credentials between the servers and enable the VMs to be shared between servers.

Managing Hyper-V with PowerShell

166

Next, we log onto the first Hyper-V Server HV01 and use New-VM to create our virtual machine.
We have to log on to the server directly so that the Kerberos Delegation will allow the Hyper-V
server to place the VHDx file on the network share. We then create and install a virtual
machine on the network share.

Next, we call Set-VMHost and Enable-VMMigration to enable live migration for both
Hyper-V hosts. We configure the servers to use any available network for migration and to use
Kerberos authentication for migration between servers.

We then call Get-VMHost to confirm our migration settings. As we can see from
the output, VirtualMachineMigrationEnabled is set to True. Additionally,
VirtualMachineMigrationAuthenticationType is set to Kerberos.

Lastly, we call Move-VM to migrate the VM between the Hyper-V Servers:

See also
More information about Kerberos Delegation and Hyper-V can be found at http://blogs.
technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-
constrained-delegation-for-hyper-v-management.aspx.

Migrating VM storage between hosts
In environments without shared storage, Hyper-V operates using local storage on each server
to hold the virtual machines. Hyper-V allows for migration of virtual machines and their virtual
hard disks between Hyper-V Servers using local storage. This allows for VM portability between
hosts without the additional cost of shared storage.

Getting ready
In this recipe we will be using two Hyper-V Servers, each with locally attached storage. The
virtual machines reside on locally attached storage on the Hyper-V Servers and we will move
the VM and its disk contents between the hosts. This process will occur without any downtime
on the virtual machine:

http://blogs.technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-constrained-delegation-for-hyper-v-management.aspx
http://blogs.technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-constrained-delegation-for-hyper-v-management.aspx
http://blogs.technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-constrained-delegation-for-hyper-v-management.aspx

Chapter 4

167

Due to Kerberos restrictions, you must be logged on to the source
server to properly authenticate to the target server.

How to do it...
Complete the following steps to migrate VM storage:

1. Log onto server HV01 and open a PowerShell console.

2. Execute the following to initiate the migration:
Move-VM -Name VM1 -DestinationHost HV02 `
-DestinationStoragePath E:\vm -IncludeStorage

How it works...
To move the virtual machines between hosts, we first log on to the server that currently
hosts the virtual machine that is being migrated. Next, we use Move-VM to move the virtual
machine and virtual hard disks to the target server.

Depending on the size of the VM and the speed of the storage and
networking, this process may take an extended period of time.

Managing Hyper-V with PowerShell

168

Using failover clustering to make VMs highly
available

One of the more proven methods to make virtual machines highly available is to configure
multiple Hyper-V Servers into a failover cluster. The virtual machines are then placed on the
cluster nodes instead of the individual servers. The cluster is configured to migrate VMs from
one host to another when instructed, when a host is placed into maintenance, or when a host
unexpectedly fails.

Getting ready
For Hyper-V clustering to work properly, we will need two Hyper-V Servers with shared storage
to host the virtual machines. In this example we are using a CIFS file share to host the virtual
machines as shown in the recipe Migrating VMs between hosts.

This recipe will cover only one method of configuring a simple Hyper-V
cluster. Additional options and configurations exist and may be more
appropriate for your environment.

How to do it...
Carry out the following steps to set up failover clustering for Hyper-V:

1. Open Active Directory Users and Computers (dsa.msc) and open the computer
properties of the Hyper-V Server HV01.

Chapter 4

169

2. On the Delegation tab, select Trust this computer for delegation to any service and
click on OK:

3. Reboot the server HV01 for the changes to take effect.

4. Repeat steps 1-3 for server HV02.

5. Install failover clustering on the Hyper-V Servers:
Invoke-Command -ComputerName HV01, HV02 -ScriptBlock {
 Install-WindowsFeature Failover-Clustering
-IncludeManagementTools
}

6. Configure the server as a cluster:
New-Cluster -Name HVCluster -Node "HV01","HV02"

Managing Hyper-V with PowerShell

170

7. Create the new virtual machine on the shared storage:
New-VM -Name VM1 -MemoryStartupBytes 512MB -Path "\\CIFS1\VMs\VM1"
`
-NewVHDPath "\\CIFS1\VMs\VM1.vhdx" -NewVHDSizeBytes 100GB `
-SwitchName Production

8. Import the virtual machines to the cluster:
Add-VMToCluster -VMName VM1 -Cluster HVCluster

9. Move the virtual machine to a different node in the cluster:
Get-Cluster HVCluster | Move-ClusterVirtualMachineRole `
-MigrationType Live -Name VM1 -Node HV02

10. Place HV host into maintenance:
Suspend-ClusterNode -Cluster HVCluster -Name HV01 –Drain

11. Remove the HV cost from maintenance:
Resume-ClusterNode -Cluster HVCluster -Name HV01

How it works...
We start the process by configuring the Hyper-V Servers for delegation. Delegation is
needed for the Hyper-V Servers to access the VMs on the network share. Once configured
for delegation, we reboot the servers for the change to take effect.

Next, we use Invoke-Command to install the Failover-Clustering feature on our
servers. Once installed, we use New-Cluster to create a new failover cluster named
HVCluster with both nodes included.

Next, we create a new virtual machine on the shared storage. This step shows creating a new
virtual machine with the New-VM command, but existing VMs can also be migrated onto the
shared storage. To achieve this, the Move-VMStorage command is used and executed from
the Hyper-V Server hosting the VM.

Once one VM is hosted on shared storage, we use Add-VMToCluster to import the VM as
a cluster role. When called, this command automatically searches the nodes in the Hyper-V
Server environment to find the VM by name. Once found, the VM is imported to the cluster
and managed as a cluster resource.

Now that the cluster is configured and VMs are imported, we can migrate VMs between
the hosts. In the ninth step, we use Move-ClusterVirtualMachineRole to perform
a Live-Migration of VM1 to the second Hyper-V Server. This occurs without requiring
downtime of the virtual machine.

Chapter 4

171

After we have proven that migration works between the nodes, we can then place one of
the nodes into maintenance. By calling Suspend-ClusterNode, we are telling the failover
cluster to stop processing on the node. We suspend the node with the Drain switch, which
tells the cluster to migrate all running roles to other hosts in the cluster prior to suspending.
When all roles have been migrated, the host is suspended to allow for maintenance tasks.

Finally, we call Resume-ClusterNode to resume our cluster node and enable it to
host resources.

There's more...
When creating a VM cluster, there is often a question of how big to make the cluster.
By having a minimum of resources, there is no waste of unused CPU or memory on the
hosts. By having excess resources, it provides for flexibility in maintenance and expansion
of the virtual environment.

I have found that sizing the environment into an N + 2 configuration optimal allows for a
single host to be in maintenance mode, while still providing resources for an unplanned
failover. Additionally, if the resource demands increase (such as adding additional VMs),
the environment will only drop to an N + 1 configuration. At this point we can easily prove
the need for additional compute resources without limiting our ability to perform failover or
maintenance tasks.

See also
More information about Kerberos Delegation and Hyper-V can be found at http://blogs.
technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-
constrained-delegation-for-hyper-v-management.aspx.

http://blogs.technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-constrained-delegation-for-hyper-v-management.aspx
http://blogs.technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-constrained-delegation-for-hyper-v-management.aspx
http://blogs.technet.com/b/matthts/archive/2012/06/10/configuring-kerberos-constrained-delegation-for-hyper-v-management.aspx

Managing Storage with
PowerShell

This chapter covers the following topics:

 f Managing NTFS file permissions

 f Managing NTFS alternate streams

 f Configuring NTFS deduplication

 f Monitoring NTFS deduplication

 f Configuring storage pools

 f Reporting on storage pools

 f Managing file quotas

Introduction
This chapter covers how to configure and manage storage using traditional disk, storage
pools, and the new deduplication feature in Windows Server 2012.

Managing NTFS file permissions
NTFS file permissions are one of the cornerstones of Windows security. By managing the file
permissions, we can decide who has access to which files or directories, and what kind of
access they have: read, write, change permissions, and so on.

In this recipe we will cover basic management of file permissions using PowerShell.

5

Managing Storage with PowerShell

174

Getting ready
All of the steps in this recipe are being performed on a single domain joined server acting
as a file server. In this recipe we will be performing four tasks:

 f Editing the permissions on an Excel spreadsheet

 f Cloning permissions for a new folder

 f Taking ownership and reassigning permissions

 f Enabling inheritance

These steps can be performed locally on the server, remotely using
a PSSession, or remotely using file shares.

How to do it...
The tasks we are going to perform are as follows.

Editing the permissions on an Excel spreadsheet
The sales team has an Excel spreadsheet, M:\Sales\Goals.xls, on our file server that
uses NTFS permissions to restrict access. The sales administrator has asked that the new
employee, Joe Smith, be given full control access to the file. Perform the following steps:

1. Identify the file to update and open a PowerShell console.

2. Read the permissions file and save them into a variable called $acl:
$acl = Get-Acl M:\Sales\goals.xls

3. Create new FileSystemAccessRule for the new user with the
appropriate permissions:
$ace = New-Object System.Security.AccessControl.
FileSystemAccessRule "joe.smith","FullControl","Allow"

4. Append the permissions:
$acl.SetAccessRule($ace)

5. Apply the permissions to the file:
$acl | Set-Acl M:\Sales\goals.xls

Chapter 5

175

Cloning permissions for a new folder
The marketing department has a folder on our file server named M:\Marketing and has
requested a new folder named M:\Marketing2. Additionally, they want the new folder to
have the same permissions as their current folder. Perform the following steps:

1. Open PowerShell and create the new folder
New-Item M:\Marketing2 -ItemType Directory

2. Get the existing folder permissions
$SrcAcl = Get-Acl M:\Marketing

3. Set the new permissions
Set-Acl -Path M:\Marketing2 $SrcAcl

Taking ownership and reassigning permissions
The user, Ricardo Cuello, is on vacation and Joe Smith, their manager, needs access to
files they were working on. All of the files are stored on our file server under M:\Groups\
Projections, however, the user was the only person with access to the files. You have
been asked to provide access for the manager. Perform the following steps:

1. Open PowerShell and take ownership of the folder:
$folder = "M:\Groups\Projections"
takeown /f $folder /a /r /d Y

2. Add permission for the manager:
$acl = Get-Acl $folder
$ace = New-Object System.Security.AccessControl.
FileSystemAccessRule `
"joe.smith","FullControl","Allow"
$acl.SetAccessRule($ace)
Set-Acl $folder $acl

3. Recursively overwrite permissions:
Get-ChildItem $folder -Recurse -Force |`
ForEach {
 Get-Acl $acl | Set-Acl -Path $_.FullName
}

Managing Storage with PowerShell

176

Enabling and disabling inheritance
A team has created a folder named Imaging under M:\Groups and asked that the
default file permissions not be applied to their folder on the file server. Instead of inheriting
permissions from the parent folder, they want to selectively choose who has access to the
files. Perform the following steps:

1. Open PowerShell and gather the current permissions:
$acl = Get-Acl M:\Groups\Imaging

2. Enable or disable inheritance:
$acl.SetAccessRuleProtection($True, $False)
#first option is to disable inheritance - true=disable
#second option is to keep inherited permissions - false=discard

3. Commit the change:
Set-Acl M:\Groups\Imaging $acl

How it works...
In the first step we are using Get-Acl and Set-Acl to add permissions to a file. We start by
getting the current Access Control List (ACL) on the file and placing it into the variable $acl.

We then create new System.Security.AccessControlFileSystemAccessRule to
create an Access Control Entry (ACE) named $ace. We then assign the FullControl
permission to our user Joe Smith.

Lastly, we call $acl.SetAccesRule in order to add the new permissions. We then call
Set-ACL to assign the updated permissions to our Excel document.

If we view the file properties, we can confirm that the new user has access to the file.

Chapter 5

177

In the second step we start by calling New-Item to create the new directory for the
Marketing department.

We then call Get-Acl against M:\Marketing to get the permissions on the existing folder.
These permissions are saved in the variable $srcAcl.

Lastly, we use Set-Acl to apply the copied permissions to the new M:\Marketing2
folder. This step overwrites any existing permissions on the new folder, leaving only the
copied permissions.

In the third step we start by administratively seizing the ownership of the folder using the
takeown command. Takeown is not a PowerShell command, but instead a tool included
with Windows Server 2012 that allows an administrator to take ownership of a file or folder.

Once we have seized ownership of the folder, we create an access rule for the manager to
access the folder. This process is the same as in the first step by reading the current file
permissions, adding an ACE granting, and applying the permissions to the folder.

Lastly, we use Get-ChildItem to recursively move through the folders and files. For each
file or folder, we use Set-ACL to set permissions.

Managing Storage with PowerShell

178

Seizing permissions requires the commands to be executed in an
administrative session. Ensure PowerShell is running as an administrator
when executing the commands.

In the last step we use the SetAccessRuleProtection command to configure permission
inheritance. We begin by using Get-ACL to read the credentials of the current folder and
storing the results in the variable $acl. We then use $acl.SetAccessRuleProtection to
disable inheritance and discard any inherited permissions. Lastly, we use Set-Acl to apply
the permissions to the folder.

The SetAccessRuleProtection command takes two inputs: the first to enable or disable
inheritance, and the second to keep or discard inherited permissions. In this scenario we
are disabling permission inheritance and discarding all inherited permissions. Only those
permissions applied directly to the file will remain.

Managing NTFS alternate streams
In addition to NTFS permissions, Windows also tracks what is known as alternate streams
regarding files. These alternate streams help identify where a file is originally from and what
type of additional security to place on it.

In this recipe we will view the data streams on a file and unblock the file to allow full access.

Getting ready
One of the most common uses of alternate streams is when downloading files from the
Internet. Windows will automatically tag these files and apply additional security when they
are accessed. To access the files normally, you have to unblock the file.

For this recipe we will be downloading the WMF 3.0 Release Notes.docx file from
http://download.microsoft.com. We will then use this file to review and change
the data streams. Any other file downloaded from the Internet will work here as well.

How to do it...
Perform the following steps to manage NTFS alternate streams:

1. Open Internet Explorer and browse to http://download.microsoft.com.

2. Search for Windows Management Framework 3.0, and download the WMF 3
Release Notes.docx file:

http://download.microsoft.com
http://download.microsoft.com
http://download.microsoft.com

Chapter 5

179

By default, Windows will download the file to the Downloads
folder in your user profile.

3. View the file and stream information on the downloaded files:
Get-Item C:\Users\Ed\Downloads*.* -Stream *

When executed, we will see the list of streams similar to the following screenshot:

4. View the contents of the Zone.Identifier stream:
Get-Content 'C:\Users\Ed\Downloads\WMF 3 Release Notes.docx:Zone.
Identifier'

When executed, we will see the contents of the stream:

5. Unblock the file and confirm the Zone.Information stream is removed:
Unblock-File 'C:\Users\Ed\Downloads\WMF 3 Release Notes.docx'
Get-Item 'C:\Users\Ed\Downloads*.*' -Stream *

Managing Storage with PowerShell

180

When executed, we will see the original $DATA stream only:

How it works...
We start by browsing to http://download.microsoft.com and searching for the WMF 3
Release Notes, which includes the release notes for PowerShell 3.0.

Next, we call Get-Item to view the files in our Downloads folder. Here, we use the –Stream
switch to return both the files and all streams attached to the files. As we can see from the
result, there are two streams for our file. The :$DATA stream is the content of the file itself.
The Zone.Identifier stream identifies where the file originated.

We then use Get-Content to view the contents of the Zone.Identifier stream. To
view the stream, we reference the filename, plus :Zone.Identifier. As we can see from
the output, this stream contains a small amount of text that identifies the file as being from
ZoneId 3, which means the file is from the Internet.

In the last step we use Unblock-File to remove the alternate stream. This is equivalent
to pressing the Unblock button on the file properties as shown in the following screenshot.
Once the file has been unblocked, we review the stream information and confirm that only the
:$DATA stream remains. Because the additional stream has been removed, Windows now
trusts the file.

http://download.microsoft.com

Chapter 5

181

There's more...
NTFS alternate streams are actually hidden text files in the filesystem. They are seen by the
operating system as additional file information and so aren't shown when listing the contents
of a file.

We can also create our own alternate streams using a text editor. By following the same
naming scheme shown previously, filename.exe:Zone.Identifier, we can add or
edit the zone information for other files. There are six possible zones:

 f NoZone = -1

 f MyComputer = 0

 f Intranet = 1

 f Trusted = 2

 f Internet = 3

 f Untrusted = 4

Managing Storage with PowerShell

182

Configuring NTFS deduplication
In previous versions of Windows Server, there was an option for Single Instance Storage. This
allowed users to store the same file multiple times on a system, but the system only kept a
single instance of the file. This was often used for Remote Installation Services (RIS), which
required multiple copies of the Windows installation disk, one for each installation source.

New in Server 2012 is the data deduplication feature. This feature allows for block-level
deduplication of files, comparison and deduplication of smaller pieces or chunks of files.
This allows for more storage savings between both similar and dissimilar files.

Getting ready
In this recipe we will be working with a new file server with minimal information on it.
Specifically, we will be working with our M:\ drive. We know that usage of the server will
increase, so we are configuring deduplication early.

How to do it...
Perform the following steps to enable deduplication:

1. Install the deduplication feature on the server:
Add-WindowsFeature FS-Data-Deduplication

2. Use DDPEval to report on the estimated savings:
ddpeval.exe M:\

When completed, you will see the estimated results similar to the
following screenshot:

Chapter 5

183

3. Configure the disk for deduplication:
Enable-DedupVolume M:\

4. Set the deduplication age to 0 days to test deduplication process:
Set-DedupVolume M: -MinimumFileAgeDays 0

5. Start the deduplication job:
Start-DedupJob M: -type Optimization

How it works...
In the first step we are installing the FS-Data-Deduplication feature on the file server.
Included with the deduplication feature is a tool named DDPEval that estimates the potential
storage savings using deduplication. Once the feature is installed, we execute DDPEval to
report on potential savings. In this scenario the tool reports that we can reclaim up to 80
percent of the currently used storage.

Next, we use Enable-DedupVolume to enable deduplication on the target drive. Enabling
the volume includes it in the scheduled optimization jobs. Once the optimization job executes,
duplicate data on the disk will be consolidated and free space will begin to be reclaimed.

In the fourth step we are calling Set-DedupVolume with the –MinimumFileAgeDays
switch. This setting identifies how long a file should remain unchanged before deduplicating
it. Because the deduplication/reduplication process slows access to the files on the server, it
is normally best to deduplicate only on files that are infrequently accessed. In this case we are
setting it to 0 days so we can test the deduplication process.

Lastly, we call Start-DedupJob to manually start the Optimization (deduplication) job
on the target drive. Depending on the amount of data on the drive, the process can take an
extensive amount of time.

There's more...
Historically, a common use for data deduplication is for storing backup information. When a
system is backed up, the information is stored on a remote share and deduplicated against
itself. When the next system is backed up, the information is deduplicated against itself, and
also against the data from the other systems. This results in the backup system being able to
perform full backups of multiple systems, and yet only store the unique data between
the backups.

Managing Storage with PowerShell

184

See also
For more information about data deduplication in Server 2012, refer the following websites:

 f http://blogs.technet.com/b/filecab/archive/2012/05/21/
introduction-to-data-deduplication-in-windows-server-2012.aspx

 f http://technet.microsoft.com/en-us/library/hh831602.aspx

Monitoring NTFS deduplication
Once data deduplication is configured on a server, we can monitor the processing to ensure it
is operating properly. Additionally, we will need to routinely review the amount of savings and
schedules of the deduplication process.

Getting ready
In this recipe we are moving forward with the configuration of the prior recipe. Most
deduplication settings are left to the defaults, except for the minimum file age which is set to 0.

How to do it...
Perform the following tasks to monitor deduplication:

1. Get the status of the deduplication process:
Get-DedupJob

When executed, we will see the status of any current deduplication processes:

2. Report on deduplication savings:
Get-DedupStatus

http://blogs.technet.com/b/filecab/archive/2012/05/21/introduction-to-data-deduplication-in-windows-server-2012.aspx
http://blogs.technet.com/b/filecab/archive/2012/05/21/introduction-to-data-deduplication-in-windows-server-2012.aspx
http://blogs.technet.com/b/filecab/archive/2012/05/21/introduction-to-data-deduplication-in-windows-server-2012.aspx
http://technet.microsoft.com/en-us/library/hh831602.aspx
http://technet.microsoft.com/en-us/library/hh831602.aspx

Chapter 5

185

When executed, we will see a brief report of deduplication status and current savings:

3. View the deduplication jobs schedules:
Get-DedupSchedule

When executed, we will see the current deduplication job schedules:

How it works...
We start by viewing the status of any active deduplication jobs. We execute Get-DedupJob
to report on all active deduplication jobs and their current status. One item to note here is
StartTime of the job to confirm the job is still active.

Next, we use Get-DedupStatus to view the optimization statistics. This command returns
information about how much data is being deduplicated and how much filesystem space is
being saved because of deduplication.

Lastly, we call Get-DedupSchedule to view the schedule for the deduplication jobs.
The optimization job runs hourly to continually deduplicate new data and update statistics.
The other jobs run every week during expectedly slow times.

Depending on your environment, the default schedules may not be optimal.
They can be changed by using Set-DedupSchedule.

Managing Storage with PowerShell

186

There's more...
There are three scheduled deduplication jobs: Optimization, GarbageCollection,
and Scrubbing. The Optimization job is responsible for identifying duplicate data on
the filesystem and freeing up the storage. Additionally, for data that cannot be deduplicated,
the optimization job will compress. This job runs hourly, and once the initial job is complete,
subsequent passes finish quickly as they only process new data.

The remaining jobs are responsible for reclaiming and maintaining the freed storage.
The GarbageCollection job is responsible for removing deleted information from the
deduplication store. The Scrubbing job performs maintenance on the deduplication store
and repairs data if needed.

Configuring storage pools
New in Server 2012 is a feature to create and use storage pools. Storage pools work in a
similar way to the Redundant Array of Independent Disks (RAID) configurations, but provide
additional flexibility not available in traditional RAID. With storage pools, additional disks
can be added and data will be automatically balanced between the disk, and we can
also change the data protection type dynamically.

Getting ready
In this recipe we will be using three 100 GB drives in addition to our OS drive. Once joined
into a storage pool, we will create a small virtual disk to hold test data.

How to do it...
Perform the following steps to set up storage pools:

1. List disks capable of pooling:
Get-PhysicalDisk -CanPool $true

After completing the command, we will see a list of disks available for pooling:

Chapter 5

187

2. Using the available disks, create a storage pool:
$poolDisks = Get-PhysicalDisk -CanPool $true
New-StoragePool -FriendlyName "MyPool" -PhysicalDisks $poolDisks `
-ProvisioningTypeDefault Thin `
-StorageSubSystemFriendlyName "Storage Spaces*"

3. Using the newly created storage pool, create a virtual disk:
Get-StoragePool -FriendlyName MyPool | `
New-VirtualDisk -FriendlyName "TestData" -Size 10GB `
-ProvisioningType Thin

After completing the command, we will receive confirmation that the virtual disk
is created:

4. Initialize, partition, and format the virtual disk:
Get-VirtualDisk -FriendlyName TestData | Initialize-Disk -PassThru
| `
New-Partition -AssignDriveLetter -UseMaximumSize | `
Format-Volume -Confirm:$false

How it works...
We start the process by calling Get-PhysicalDisk with the –CanPool switch to identify
which disks are available and support pooling.

Not all disks are supported in storage pools. For instance, to create a
storage pool we need at least two physical disks 4 GB or larger in size.

Next, we create a new storage pool named MyPool. We add all of the available disks and set
-ProvisioningType to Thin. The Thin provisioning allows us to present large disks to the
operating system, but they only require enough storage to house the data on the drives. This
is a common method to present large amounts of storage to users and applications, but only
consumes what is needed.

Managing Storage with PowerShell

188

Once the storage pool is created, we create a virtual disk on the storage pool. In this instance,
we create a 10 GB disk and identify it to use thin provisioning. Once created, the virtual disk is
presented to the operating system as a new drive. The disk is then initialized, partitioned, and
formatted as any other drive.

There's more...
As we saw in the third step, Windows defaulted to creating new virtual disks with a Mirror
configuration. We can confirm this by running Get-StoragePool and viewing the default
resiliency setting:

Because we are using more than two disks in our pool, we can change the default resiliency
setting by using the Set-StoragePool command:

Reporting on storage pools
Once created, we need to routinely review the storage pools to ensure they are functioning
properly. One item we need to pay attention to is the utilization of the thin pools and disks in
our environment. If the underlying disks in a thin pool fill up, we can have unexpected results
in the presented virtual disks.

Getting ready
In this recipe we will be working with the storage pool configuration created in the previous
recipe. We will be reporting on the utilization of the storage pools and the virtual disks in
the pools.

Chapter 5

189

How to do it...
Perform the following steps to report on storage pools:

1. Report on storage pool usage:
Get-StoragePool | `
Format-Table FriendlyName, `
@{Name="AllocGB";Expression={$_.AllocatedSize/1GB}}, `
@{Name="SizeGB";Expression={$_.Size/1GB}}

When executed, we will see a status similar to the following screenshot:

2. Get virtual disk usage:
Get-VirtualDisk | `
Format-Table FriendlyName, `
@{Name="AllocGB";Expression={$_.AllocatedSize/1GB}}, `
@{Name="FootPrintGB";Expression={$_.FootprintOnPool/1GB}}, `
@{Name="SizeGB";Expression={$_.Size/1GB}}

When executed, we will see a status similar to the following screenshot:

How it works...
We start by using Get-StoragePool to view the pools on the server and their properties.
Specifically, we are interested in the size of the pool (SizeGB) and the amount of space
consumed (AllocGB). This quickly allows us to see how much storage has been consumed
versus how much is available.

Next, we use Get-VirtualDisk to view the virtual disks and report on the utilization. In this
instance we are reporting on how much data is in the virtual disk (AllocGB), how much raw
disk space is consumed (FootPrintGB), and the maximum size of the virtual disk (SizeGB).

Managing Storage with PowerShell

190

The FootPrintGB size shown is double the AllocGB size. This is
because the virtual disk is provisioned as a mirror, meaning the data is
stored twice in the storage pool.

There's more...
With server virtualization becoming a common technology, it is tempting to use storage
pools inside of virtual machines. While this is possible, care needs to be taken on where
the underlying disks are physically located.

Storage pools mirror and stripe the data among multiple disks to provide redundancy and
improved performance. However, if a virtual machine's storage pool disks reside on the same
physical disk, all of these benefits are lost. In reality, the striping and mirroring will decrease
the performance of the storage pool.

Managing file quotas
Another great feature of Windows Server is the ability to place quotas on folders. Quotas allow
an administrator to restrict the amount of data users can place on a server. A common use for
quotas is with a user's home directory. By limiting the amount of data a user can place on the
server, it prevents one user from unfairly using all of the available storage.

There are two types of quotas available for Server 2012: hard and soft. Hard quotas restrict
how much data a user can store on the server and will block any usage above the defined quota
limit. Soft quotas track how much data a user is consuming and alert when the limit is reached.
Users will still be able to store additional information when soft quotas are exceeded.

Getting ready
In this recipe we will be working with our file server to create simple quotas for our users
and groups. We will be using a soft quota and configuring the e-mail settings to enable
alerts when quota thresholds are reached.

How to do it...
Perform the following steps to enable file quotas:

1. Install the File System Resource Manager:
Install-WindowsFeature FS-Resource-Manager -IncludeManagementTools

Chapter 5

191

2. Get the current e-mail configuration, and configure e-mail alerting for the
soft/hard quotas:
Get-FsrmSetting
Set-FsrmSetting -SmtpServer mail.corp.contoso.com `
-FromEmailAddress FSAdmin@corp.contoso.com

3. Create a template based on one of the built-in templates:
$myQuota = Get-FsrmQuotaTemplate -Name "Monitor 500 MB Share"
$myQuota | New-FsrmQuotaTemplate -Name HomeFolders
Set-FsrmQuotaTemplate -Name HomeFolders -Threshold $myQuota.
Threshold

4. Create auto-apply quota:
New-FsrmAutoQuota -Path E:\Users -Template HomeFolders

5. Create quota:
New-FsrmQuota -Path E:\Groups -Template HomeFolders

6. Generate a quota usage report:
New-FsrmStorageReport -Name "Quota Report" -Namespace "E:\" `
-ReportTypeQuotaUsage -Interactive -MailTo fsadmin@corp.contoso.
com

How it works...
In the first step we install the File Server Resource Manager feature on our server.
This feature allows our file server to implement quotas on disks and folders as well
as perform file classification.

In the second step we review the current configuration of the server, then update it to fit
our environment. We use Get-FsrmSetting to return to the current settings. Note the
SMTPServer, FromEmailAddress, and AdminEmailAddress settings. We configure the
SmtpServer and FromEmailAddress settings to enable e-mailing in our environment.

In the third step, we are using the built-in Monitor 500 MB Share template to create a new
template named HomeFolders. We start by calling Get-FsrmQuotaTemplate to save
the existing template settings into the $myQuota variable. We then pipe the settings into
New-FsrmQuotaTemplate to create the new template. Finally, we use Set-
FsrmQuotaTemplate to assign the thresholds and actions. In this instance we are keeping
the same settings; however, we could also update the hard/soft thresholds, and the actions
that occur when the thresholds are met.

Managing Storage with PowerShell

192

In the fourth and fifth steps we are applying quotas to our folders. First, we call
New-FsrmAutoQuota in order to apply Auto Quota on the E:\Users folder.
This setting automatically applies quota policies on all folders included in the quota.
Next, we call New-FsrmQuota to apply a standard Quota on the E:\Groups folder.
This quota includes subfolders, but additional quotas can be applied at subfolders.

In the last step we are calling New-FsrmStorageReport to use the built-in reporting
features of the File Server Resource Manager. In this instance, we are generating a report
immediately, instead of scheduling it, and e-mailing it to the file server administrator.

There's more...
Our template defaults to e-mailing the file server administrator when a user reaches 80
percent, 100 percent, and 120 percent of the quota limit. We can change these alerts to
additionally e-mail the user when the thresholds are reached.

$myQuota = Get-FSRMQuotaTemplate HomeFolders
$myQuota.Threshold.Action | Where-Object Type -eq Email | `
ForEach-Object {$_.MailTo = "[Admin Email];[Source Io Owner Email]"}
Set-FsrmQuotaTemplate -Name $myQuota.Name -Threshold $myQuota.
Threshold

The preceding code updates all of the e-mail alerts in our template. The script starts by using
Get-FsrmQuotaTemplate to retrieve a reference to our quota template and placing it into
the $myQuota variable. We filter $myQuota based on the action performed when a threshold
is reached. For each of these actions, the MailTo attribute is updated to include the file
server administrator, as well as the identified owner of the files.

Chapter 5

193

When completed, we can review the settings in the File Server Resource Manager and confirm
that both the administrator, as well as the user checkboxes are selected. Open File Server
Resource Manager and go to Quota Management | Quota Templates. Right-click on the
quota and select Edit Template Properties. Select the Warning (100%) threshold and click on
Edit to view the properties as shown in the following screenshot:

Managing Network
Shares with PowerShell

In this chapter, we will cover the following recipes:

 f Creating and securing CIFS shares

 f Accessing CIFS shares from PowerShell

 f Creating iSCSI target and virtual disk

 f Using a iSCSI disk

 f Configuring and using iSNS

 f Creating an NFS export

 f Mounting NFS exports

 f Making CIFS shares highly available

 f Configuring DFS and DFSR replication

 f Configuring BranchCache

Introduction
This chapter covers creating, managing, securing, and using CIFS, NFS, and iSCSI shares.
This chapter will also cover how to use server clustering to create highly available network
shares, managing replication, and configuring BranchCache.

6

Managing Network Shares with PowerShell

196

Creating and securing CIFS shares
Common Internet File Services, or CIFS, is the traditional method for sharing files and
folders between Windows computers. These file shares are normally referenced with a
Universal Naming Convention (UNC) in the form of \\server\share.

Occasionally referred to as Server Message Block (SMB), CIFS shares have been the primary
method for sharing files, print jobs, and information. These shares can be created to provide
access to files and folders on a system, and then secured to restrict which users have access
to read, update, or manage permissions on the contents.

Windows Server automatically includes the necessary features to enable file sharing over
CIFS. As such, there is no need to install or configure the feature, instead we can begin
creating and managing shares.

In this recipe we will create two file shares. The first share will provide Read Only access to
the Everyone group, and later we will provide Full Control access for a domain user. The
second share will provide Read Only access to the Everyone group and Full Control
access to the Administrator account.

Getting ready
For this recipe we will be working with a Windows Server 2012 server joined to a domain.
This server will operate as a file server and contain a separate drive, E:\, to hold the
file shares.

How to do it...
Carry out the following steps in order to create and secure CIFS shares:

1. View the current shares on your server:
Get-SmbShare

When executed, a list of the current shares will be returned as shown in the
following screenshot:

file:///\\server\share

Chapter 6

197

Notice that a server will contain CIFS shares even if the administrator
hasn't created them. These are known as administrative shares and are
hidden from most users.

2. Create the first basic file share:
New-Item -Path E:\Share1 -ItemType Directory
New-SmbShare -Name Share1 -Path E:\share1

When executed, PowerShell will return a window confirming the success as shown
in the following screenshot:

3. Create a second share granting everyone read access:
New-Item -Path E:\Share2 -ItemType Directory
New-SmbShare -Name Share2 -Path E:\share2 -ReadAccess Everyone `
-FullAccess Administrator -Description "Test share"

When executed, PowerShell will create the share and return a confirmation screen:

4. To confirm the shares and permissions from the prior steps, list the
share permissions:
Get-SmbShare | Get-SmbShareAccess

Managing Network Shares with PowerShell

198

When executed, PowerShell will return all shares and the assigned permissions as
shown in the following screenshot:

5. Grant Full Control access to the first share for user Joe Smith:

Grant-SmbShareAccess -Name Share1 -AccountName CORP\Joe.Smith `
-AccessRight Full -Confirm:$false

When completed, the new permissions for the share will be returned:

How it works...
We start off by calling Get-SmbShare to view the shares already on the server. This is a new
server, so only the administrative shares exist. These administrative shares are hidden from
normal users because they end in a dollar sign ($).

By default, Windows Server 2012 includes the Storage Services feature
that provides basic file sharing. No additional feature is needed to
support CIFS shares.

Next, in step 2, we use New-SmbShare to create a new file share on E:\share1. When
executed without any additional switches, PowerShell creates the share with the default
permissions of the Everyone group having read access.

Chapter 6

199

In step 3, we use New-SmbShare to create another share at E:\share2. This time we the
use additional –ReadAccess and –FullAccess switches to define permissions on the
share. Additionally, we include the –Description switch to assign a description to the share.
This description is seen by users when browsing shares on a server and are normally used
to help identify the purpose of the share.

Next, in step 4, we call Get-SmbShareAccess to report on the current permissions for each
share. As we can see in the results, PowerShell returns the shares, the user/group, if they are
allowed access, and the level of access granted.

Lastly, in step 5, we update the permissions on the first share that we created. Here we are
using Grant-SmbShareAccess in order to allow the domain user CORP\Joe.Smith access
to the share. We use the –AccessRight switch to define the access rights we want to grant
the target user or group. Once complete, PowerShell returns the new access list for the share.

In addition to share permissions, Windows also utilizes NTFS
permissions to determine a user's total access. When granting access to
a share, we also need to review the file permissions to ensure access is
appropriate.

There's more...
In addition to granting access to Windows shares, PowerShell can also deny access.
Often referred to as an explicit deny, this revokes access for a user or group to the
designated share, regardless of other permissions. To manage this, PowerShell has
two built in commands: Block-SmbShareAccess and Unblock-SmbShareAccess.

For instance, if we need to block access for a user to a share, we can use the Block-
SmbShareAccess cmdlet.

Block-SmbShareAccess -Name Share2 -AccountName CORP\joe.smith `

-Confirm:$false

When executed, PowerShell returns the updated access list. Notice the first line for CORP\
Joe.Smith now has an AccessControlType of Deny:

Managing Network Shares with PowerShell

200

See also
For more information about CIFS shares and PowerShell, see http://blogs.technet.
com/b/josebda/archive/2012/06/27/the-basics-of-smb-powershell-a-
feature-of-windows-server-2012-and-smb-3-0.aspx.

Accessing CIFS shares from PowerShell
Once CIFS shares are provided by a server, we can access them remotely. We can
access these shares by using different methods to in order to access them temporarily
or permanently and to connect to them using different credentials.

Getting ready
For this recipe we will be using a Windows Server 2012 system to remotely access the file
shares created in the Creating and securing CIFS shares recipe.

How to do it...
Carry out the following steps to access a CIFS share:

1. Use Get-ChildItem to view the contents of a share:
Get-ChildItem \\server1\share2

When completed, a listing of the contents of the share is returned as shown
in the following screenshot:

2. Map the share as persistent:
New-PSDrive -Name S -Root \\server1\share1 -Persist -PSProvider
FileSystem

http://blogs.technet.com/b/josebda/archive/2012/06/27/the-basics-of-smb-powershell-a-feature-of-windows-server-2012-and-smb-3-0.aspx
http://blogs.technet.com/b/josebda/archive/2012/06/27/the-basics-of-smb-powershell-a-feature-of-windows-server-2012-and-smb-3-0.aspx
http://blogs.technet.com/b/josebda/archive/2012/06/27/the-basics-of-smb-powershell-a-feature-of-windows-server-2012-and-smb-3-0.aspx

Chapter 6

201

When completed, the share will appear in Windows File Explorer as a mapped drive:

3. Map the share using alternative credentials:
$secPass = ConvertTo-SecureString 'P@$$w0rd11' -AsPlainText –Force
$myCred = New-Object -TypeName PSCredential `
-ArgumentList "CORP\Administrator",$secPass
New-PSDrive -Name S -Root \\server1\share1 -Persist `
-PSProvider FileSystem -Credential $myCred

How it works...
We start by accessing the CIFS share directly by using Get-ChildItem. This process
passes the credentials of the currently logged on user to the target file server and returns
the contents of the share. If the user has limited permissions to the share, the results will
be limited appropriately.

In step 2, we use New-PSDrive to map the remote share to the current user session.
The –Name switch specifies how to reference the remote drive, in this case as S:\.
The –Persist switch instructs PowerShell to create a persistent connection for the
current user, and re-establish the connection the next time the user logs in.

In step 3, we are connecting to the remote share by using different credentials. We start by
creating a PSCredential object that contains the the username and password of a user.
We then use the same command as in step 2, but we include the –Credential argument
to pass the PSCredential object.

Managing Network Shares with PowerShell

202

Creating iSCSI target and virtual disk
Internet Small Computer System Interface, or iSCSI, is a storage technology that uses TCP/
IP to link storage with computers. iSCSI is based on the proven SCSI technology that is used
in many servers and storage arrays, but is transmitted over TCP/IP instead of specialized
cables or interfaces.

A basic iSCSI connection consists of an iSCSI target and an iSCSI initiator. The target contains
the storage resources that are presented to clients. This can be a dedicated storage array, a
Windows 2012 Server, or another resource, such as a tape library. The initiator is the iSCSI
client that accesses data on the remote target.

Because iSCSI utilizes TCP/IP as a transport medium, it can be implemented wherever there is an
existing IP network with little to no cost. iSCSI can be used to transmit data within a datacenter,
within a Local Area Network (LAN), across a Wide Area Network (WAN), or even across the
Internet. Different layers of security can be implemented between the target and initiator in order
to secure and encrypt the connections depending on the needs of the environment.

Getting ready
In this recipe we will be installing the iSCSI target on our file server. We will then create a
virtual disk on the E:\ and share it to a client with the IP address of 10.10.10.10.

How to do it...
Perform the following steps to create an iSCSI target:

1. Install the iSCSI target feature as follows:
Install-WindowsFeature -Name FS-iSCSITarget-Server

2. Identify the iSCSI initiators that are allowed access:
New-iSCSIServerTarget -Targetname ContosoServers `
-InitiatorID IPAddress:10.10.10.10

3. Create a new virtual disk for iSCSI:
New-iSCSIVirtualDisk "E:\iSCSIVirtualDisks\Drive1.vhd" -Size 20GB

4. Map the virtual disk to the iSCSI initiators:
Add-iSCSIVirtualDiskTargetMapping -Targetname ContosoServers `
–DevicePath "E:\iSCSIVirtualDisks\Drive1.vhd"

5. Review the iSCSI mappings:
Get-IscsiServerTarget | `
Select-Object TargetName, Status, InitiatorIds, LunMappings

Chapter 6

203

When completed, we will see the current iSCSI mappings presented by the server, as shown in
the following screenshot:

How it works...
In step 1, we install the FS-iSCSITarget-Server feature on our file server. This is the
feature that allows our server to operate as an iSCSI target and present virtual disks to clients.

In step 2, we call New-iSCSIServerTarget to create a new client group named
ContosoServers on the server. This allows us to add one or more initiator IDs to the
group to define which clients will be able to see the resources presented.

In this instance we are configuring the InitiatorID based on the
IP address of the initiator. Alternatively, we can use the DNS name,
MAC address of the adapter, or iSCSI Qualified Name (IQN) to identify
the client.

Next, we use New-iSCSIVirtualDisk to create a virtual hard disk (VHD) file.

In step 4 and step 5, we call Add-iSCSIVirtualDiskTargetMapping to map the virtual
disk to the iSCSI client group. This process links the recently created virtual disk to the client
group. When a system in the client group ContosoServers queries the iSCSI target for
available resources, the newly-created virtual disk will be presented.

Lastly, we use Get-IscsiServerTarget to query our server for all iSCSI targets. This
returns a list of all target groups, their connectivity status, initiator addresses and presented
disks. This is useful to review your configuration and quickly view or report on the status.

Managing Network Shares with PowerShell

204

There's more...
While iSCSI has the flexibility of being implemented over existing IP networks using existing
adapters, in busy environments it may be beneficial to dedicate resources to improve iSCSI
performance. For instance, using network cards with a TCP/IP Offload Engine (TOE) or
a dedicated iSCSI Host Bus Adapter (HBA) in the servers and clients will lessen the CPU
requirements on the systems and improve performance. Additionally, segmenting the traffic
onto a separate network with dedicated HBAs, cabling, and switches can also improve
performance.

See also
For more information about the iSCSI target feature in Windows Server 2012, see http://
blogs.technet.com/b/filecab/archive/2012/05/21/introduction-of-iscsi-
target-in-windows-server-2012.aspx.

Using a iSCSI disk
Once an iSCSI target has been configured and a virtual disk presented, we can configure
clients to access the storage presented. Unlike CIFS or NFS shares, which share files and
objects, iSCSI presents disks from a block level. This means that most applications and
services can utilize the iSCSI disks as if they are physically installed on the system.

Microsoft includes a software iSCSI initiator built into Windows Server 2012 that is capable
of connecting to the iSCSI target. To utilize this initiator, we enable the service, search for
available resources, and connect to the resources.

Getting ready
In this recipe, we are connecting a Windows Server 2012 system to the storage presented in
the Creating iSCSI target and virtual disk recipe.

How to do it...
Complete the following steps to access a remote iSCSI disk:

1. Start the iSCSI initiator and set it to automatic:
Start-Service MSiSCSI
Set-Service MSiSCSI -StartupType Automatic

2. Connect to the iSCSI portal:
New-IscsiTargetPortal -TargetPortalAddress 10.10.10.100

http://blogs.technet.com/b/filecab/archive/2012/05/21/introduction-of-iscsi-target-in-windows-server-2012.aspx
http://blogs.technet.com/b/filecab/archive/2012/05/21/introduction-of-iscsi-target-in-windows-server-2012.aspx
http://blogs.technet.com/b/filecab/archive/2012/05/21/introduction-of-iscsi-target-in-windows-server-2012.aspx

Chapter 6

205

3. Identify the available targets:
$tar = Get-IscsiIarget

4. Connect to the target:
Connect-IscsiTarget -NodeAddress $tar.NodeAddress

5. Review the connection information:
Get-IscsiSession

When executed, we will see connection information for our iSCSI target:

How it works...
By default, Windows comes with the iSCSI initiator service installed, but the service is set to
manual start. We start the process of accessing the iSCSI disk by starting the Microsoft
iSCSI Initiator Service and setting it to start up automatically. This will allow any
drives presented to remain persistent between reboots.

In step 2, we connect the initiator to the iSCSI portal on the target server. The iSCSI
portal provides mapping and security between the client computers and the iSCSI disks.
This command adds the address of the iSCSI portal to the local iSCSI initiator to be used
in the future.

Next, we use Get-IscsiTarget to query the portal and return all targets accessible to the
client. The portal returns a list of resources available to the client based on the initiator ID and
stores the information in the variable $tar.

Lastly, we use Connect-IscsiTarget to connect to our available targets. At this point,
all iSCSI disks returned by the iSCSI server will be presented to the local system.

Managing Network Shares with PowerShell

206

There's more...
If this is the first time the client has connected to the iSCSI drive, it will appear as a new drive—
unformatted and unpartitioned. We can confirm this by opening Computer Management (Start
| compmgmt.msc) and viewing the Disk Management node as shown in the next screenshot.
Once the new disk has been partitioned, future connections will use the drive as normal.

Configuring and using iSNS
The Internet Storage Name Service (iSNS) is a central directory of iSCSI targets and iSCSI
initiators. Similar to the idea of a DNS, clients and servers register to the iSNS server, and
then perform a lookup for resources available on the network. Once the list of resources
is returned, the clients can then log into the resources as needed.

In a small or highly-centralized environment, this type of configuration may not be needed.
If your environment has only one or two iSCSI targets, then the built-in target portals will
provide the required information. However, if your environment contains multiple iSCSI targets,
or will eventually grow to include multiple iSCSI targets, the iSNS server provides a central
lookup and registration tool.

Chapter 6

207

Getting ready
In this example, we will be setting up the simple configuration as shown in the next figure,
with three different systems: iSNS Server, iSCSI Target, and iSCSI Initiator. The iSCSI target
and initiators will both be configured to register with the iSNS server and automatically
access the directory information.

An iSCSI disk has already been created on the target computer and exported to the initiator.
However, no configuration has occurred on the initiator, and it currently does not have access
to the iSCSI LUN.

How to do it...
Carry out the following steps to configure and use iSNS:

1. Install the iSNS server:
Add-WindowsFeature iSNS

2. Configure the iSCSI targets to register with the iSNS server:
Set-WmiInstance -Namespace root\wmi -Class WT_iSNSServer `
-Arguments @{ServerName="corpdc1.corp.contoso.com"}

3. Configure iSCSI initiators to register with the iSNS server:
Set-WmiInstance -Namespace root\wmi `
-Class MSiSCSIInitiator_iSNSServerClass `
-Arguments @{iSNSServerAddress="corpdc1.corp.contoso.com"}

Managing Network Shares with PowerShell

208

4. Discover and register the targets:
Start-Service MSiSCSI
Set-Service MSiSCSI -StartupType Automatic
$tar = Get-IscsiIarget
$tar | ForEach-Object{ Connect-IscsiTarget -NodeAddress `
$_.NodeAddress -IsPersistent $true }

How it works...
We start on the iSNS server and install the iSNS feature. In addition to the service, this
feature also includes a tool for managing the iSNS zones. The tool can be accessed from
Server Manager | Tools | iSNS Server.

In step 2, we use PowerShell to configure the Windows iSCSI targets to register with the
iSNS server. To accomplish this we access WMI on the server and add an instance in the
WT_iSNSServer WMI class. For large or complicated environments, this command can be
repeated to register multiple iSNS servers simultaneously.

We then repeat the registration process on the iSCSI initiators. This time we are adding
an instance to the MSiSCSIInitiator_iSNSServerClass WMI class. Unlike when
configuring the target, this step can also be done manually by using the Microsoft iSCSI
initiator console.

In step 4, we start up and register the iSCSI initiator. This step is similar to the prior recipe;
however, when using iSNS we are executing Get-IscsiTarget against the iSNS server,
potentially returning results from multiple iSCSI targets. Once the targets are returned, the
script will cycle through the nodes and call Connect-IscsiTarget to attempt to connect
to them persistently.

iSNS will return all available nodes in the current zone, including
nodes that the client isn't authorized to access. When this Connect-
IscsiTarget command is executed, it is normal for some errors to be
returned.

There's more...
As your iSCSI environment grows, the number of targets, LUNs, and initiators may become
difficult to manage. Additionally, attempting to connect to the targets may become slow due
to the large number of resource connections being attempted.

Chapter 6

209

To resolve this issue, the Microsoft iSNS server supports multiple Discovery Domains.
A discovery domain is a group that contains iSCSI targets and initiators. When a member
of a specific domain requests the available resources, only the resources included in the
member's domain are returned. Similar to Active Directory groups, both targets and initiators
can be included in multiple groups.

To manage the discovery domains, use the iSNS management tool from Server Manager |
Tools | iSNS Server, or call isnsui.exe. Using this tool, shown in the next screenshot, we
can create additional discovery domains and discovery domain sets that can be enabled
as needed:

See also
For more information about the iSNS feature in Server 2012 see http://technet.
microsoft.com/en-us/library/cc772568.aspx.

Creating an NFS export
Network File System, or NFS, is file sharing technology that is very common in Unix/Linux
environments. Initially used for sharing files similar to CIFS, the use of NFS has grown
to include high-performance environments such as Oracle databases and virtualization.
Features such as connection resiliency and the ability to use either UDP or TCP make NFS
versatile and powerful.

http://technet.microsoft.com/en-us/library/cc772568.aspx
http://technet.microsoft.com/en-us/library/cc772568.aspx

Managing Network Shares with PowerShell

210

For Unix/Linux environments, basic share access was traditionally based on IP addressing; file
level security was then used to further restrict access. Microsoft has expanded share security
in NFS to include Kerberos authentication. This allows clients to be fully authenticated and
access granted or restricted by using Active Directory.

NFS exports in Windows can still utilize IP-based security. This is useful
when working in heterogeneous environments with non-Windows
systems.

Getting ready
In this recipe, we will be working in a simple Active Directory environment for authentication.
Our file server will create a share by using NFS and provide access to our clients.

How to do it...
Carry out the following steps to create an NFS export:

1. Install the NFS server service:
Add-WindowsFeature FS-NFS-Service –IncludeManagementTools

2. Create a new NFS share:
New-Item C:\shares\NFS1 -ItemType Directory
New-NfsShare -Name NFS1 -Path C:\shares\NFS1

When executed, PowerShell will display the new share information as shown in the
following screenshot:

3. Grant access to a remote computer:
Grant-NfsSharePermission -Name NFS1 -ClientName Server1 `
-ClientType host -Permission readwrite -AllowRootAccess $true

Chapter 6

211

How it works...
We start on our file server by installing the FS-NFS-Service feature service. This feature
includes everything necessary to present and secure NFS shares to clients.

Once installed, we use New-NfsShare to create the new NFS share. At its simplest, this
command requires a share path and a name. This command can also be used to identify
the type of authentication being used: Kerberos, IP address, or anonymous.

To view the authentication information, execute Get-NfsShare and PowerShell will return
the available authentication types as shown in the following screenshot:

Get-NfsShare -Name NFS1 | Format-List

Once the share is created, we call Grant-NfsSharePermission to provide access to the
share. By default, Windows creates a rule for the share of ALL MACHINES with No Access.
If no additional rules exist, access to the share will be restricted. To grant access, we add the
machine or network group and the appropriate type of access.

Managing Network Shares with PowerShell

212

To review the permissions for an NFS share, execute Get-NfsSharePremission. The
permissions assigned will be returned to the console as shown in the following screenshot:

Get-NfsSharePermission -Name NFS1

There's more...
In addition to the PowerShell commands for creating shares and granting access, Windows
also includes a built-in tool named Nfsadmin. This tool exposes the dozens of advanced
settings and options in NFS such as configuring to use UDP or TCP, using hard or soft mounts,
timeout periods, and so on.

See also
For more information about NFS in Server 2012 and interoperability with Linux, see http://
blogs.technet.com/b/filecab/archive/2012/10/09/how-to-nfs-kerberos-
configuration-with-linux-client.aspx.

Mounting NFS exports
In addition to exporting shares using NFS, Windows can also mount NFS exports. Windows
can access NFS exports from other Windows servers, as well as from Unix/Linux systems,
making this an ideal technology for sharing files and data in heterogeneous environments.

Getting ready
In this recipe, we will be accessing the NFS export shared in the prior Creating an NFS export
recipe. We will be utilizing the default Kerberos authentication included with NFS.

http://blogs.technet.com/b/filecab/archive/2012/10/09/how-to-nfs-kerberos-configuration-with-linux-client.aspx
http://blogs.technet.com/b/filecab/archive/2012/10/09/how-to-nfs-kerberos-configuration-with-linux-client.aspx
http://blogs.technet.com/b/filecab/archive/2012/10/09/how-to-nfs-kerberos-configuration-with-linux-client.aspx

Chapter 6

213

How to do it...
Carry out the following steps to mount the NFS export:

1. Install the NFS client:
Install-WindowsFeature NFS-Client

2. Mount the NFS share using the \\server\share naming scheme:
New-PSDrive N -PSProvider FileSystem -Root \\corpdc1\NFS1

When executed, PowerShell confirms the connection was successful as shown in the
following screenshot:

How it works...
In this recipe we start by installing the NFS-Client feature on the client computer. By
default, this feature is not installed in Windows Server and must be installed in order to
use NFS mounts.

Next, we use New-PSDrive to map to the network share. This command is similar to the
command used when mounting remote CIFS shares on a system. When connecting to the
remote shares, PowerShell intelligently determines whether the connection is CIFS or NFS
and connects appropriately.

There's more…
In addition to the PowerShell commands, there is a built-in tool, C:\Windows\System32\
Mount.exe, that can also be used to connect and manage NFS drives. In addition to
mounting NFS shares, it also allows for more advanced settings such as buffer sizes, locking,
and file access. For general use, the default options are sufficient; however, specialized
technologies often suggest changing these advanced options.

file:///\\server\share

Managing Network Shares with PowerShell

214

Making CIFS shares highly available
Prior to Windows Server 2012, the only solutions for making file servers redundant was to
use Clustering Services. In that case, if the primary server went offline, the backup server
would take ownership of the cluster resources. This active/passive configuration provided
redundancy during a failure, but forced the connections to be reestablished and caused
issues with some applications. Additionally, the time necessary to identify the failure and
perform the failover could cause data loss or other problems.

In Windows Server 2012, we can now use Cluster Shared Volumes (CSV) to present highly
available file shares. CSV was originally created for hosting virtual machines and allows
for multiple nodes in a Windows cluster to access the same file system simultaneously.
This allows us to present a file share in an active/active configuration with multiple servers
providing the file share. If a server is taken offline for any reason, the client connections will
automatically reconnect to the alternate cluster node without data loss.

Getting ready
For this recipe, we will be using an iSCSI server to host the source drive. Two file servers will
then attach to the same iSCSI virtual disk, and present the clustered share to clients.

We will be using the environment shown in the next with the following addresses:

Role Address
iSCSI target 10.10.10.102
File server—FS1 10.10.10.103
File server—FS2 10.10.10.104
Cluster—CIFS1 10.10.10.106

Chapter 6

215

How to do it...
Carry out the following steps:

1. Set up iSCSI on the backend server:
Install-WindowsFeature -Name FS-iSCSITarget-Server, iSCSITarget-
VSS-VDS
New-iSCSIServerTarget -Targetname "FSCluster" `
-InitiatorID "IPAddress:10.10.10.103","IPAddress:10.10.10.104"
New-Item e:\iSCSIVirtualDisks -ItemType Directory
New-iSCSIVirtualDisk "e:\iSCSIVirtualDisks\Drive1.vhd" -Size 20GB
Add-iSCSIVirtualDiskTargetMapping -Targetname "FSCluster" `
–DevicePath "e:\iSCSIVirtualDisks\Drive1.vhd"

This is the same process as used in the Creating iSCSI
target and virtual disk recipe.

2. Set up iSCSI clients on the file servers:
Invoke-Command -ComputerName FS1, FS2 -ScriptBlock{
Install-WindowsFeature -Name Failover-Clustering
-IncludeManagementTools
Start-service msiscsi
Set-service msiscsi -StartupType Automatic
New-IscsiTargetPortal -TargetPortalAddress 10.10.10.102
$tar = Get-iscsitarget
Connect-iscsitarget -NodeAddress $tar.NodeAddress
}

This is the same process as used in the Using a iSCSI
disk recipe.

3. Create the failover cluster:
New-Cluster -Name FSCluster -Node "FS1","FS2" `
-StaticAddress 10.10.10.106

4. Add the Cluster Scale Out File Server role:
Get-Cluster FSCluster | Add-ClusterScaleOutFileServerRole -name
CIFS1

Managing Network Shares with PowerShell

216

5. Run the validation tests:
Get-Cluster FSCluster | Test-Cluster

6. List the available disks:
Get-Cluster FSCluster | Get-ClusterAvailableDisk

7. Add disks to the cluster:
Get-Cluster FSCluster | Get-ClusterAvailableDisk | Add-ClusterDisk

8. Convert disks to CSV:
Get-Cluster FSCluster | Add-ClusterSharedVolume -Name "Cluster
Disk 1"

9. Create the clustered share:
Invoke-Command -ComputerName FS1 -ScriptBlock{
New-Item "c:\clusterstorage\volume1\Share1" -ItemType Directory
New-SmbShare -Name Share1 -Path "c:\clusterstorage\volume1\Share1"
}

10. Connect to the cluster share the same as if it was a standard server share:
\\cifs1\Share1

Chapter 6

217

How it works...
In step 1, we start the process by creating an iSCSI target for our file server clients. We install
the iSCSI features on the server and then create a new target group named FSCluster that
is zoned with the IP addresses of our file servers. We then create a new iSCSI disk and map
the disk to the cluster.

In this example, we are using Windows iSCSI target and initiators. Instead
of hosting the storage on a Windows server, we can also use an iSCSI or
Fibre Channel SAN instead.

In step 2, we set up the file servers. We start by installing the Failover-Clustering
feature on both of the servers. We then start the iSCSI initiators and configure them to
connect to the target configured in step 1. Finally, both file servers connect to the iSCSI target.

Next, we create the failover cluster. First, we create the cluster named FSCluster and assign
it a static IP address. We then add the Scale Out File Server role to this cluster. This
role enables the servers to use Cluster Shared Volumes across the nodes and present
file shares from the volumes.

Next, we call Test-Cluster to run validation tests on the cluster. The validation tests check
that the networking, shared storage, unshared storage, performance, and failover capabilities
are suitable for clustering. This process tests the cluster for all clustering features and some
errors will be expected. Review the generated report and specifically confirm that the CSV
tests completed successfully. In order to proceed, the test process must succeed.

In step 6, we query the cluster and return the available disks for clustering. In this example,
the command will return only one result. If no disks are returned, something is wrong with the
iSCSI or clustering configuration and needs to be resolved.

In step 7 we use Add-ClusterDisk to add the available disks into the cluster. Then in step
8, we call Add-ClsuterSharedVolume to add the disk as a CSV resource. This command
will mount the disk on our file servers under C:\ClusterStorage\Volume1.

Lastly, we create the clustered share and connect to the cluster name. We connect to the first
file server and create a directory in our ClusterStorage folder named Share1. We then
use New-SmbShare to create a new CIFS share for the new folder; this share is automatically
included as a cluster resource.

Managing Network Shares with PowerShell

218

See also
More information about using failover clustering for highly available file shares can be
found at http://blogs.technet.com/b/clausjor/archive/2012/06/07/smb-
transparent-failover-making-file-shares-continuously-available.aspx.

Configuring DFS and DFSR replication
Distributed File System (DFS) and Distributed File System Replication (DFSR) allow for
information to be replicated and accessed using a common namespace. This namespace can
contain resources from multiple different systems and in different locations, yet users are
able to access the information using a common name.

The most common usage of these technologies is Windows Active Directory, which stores and
replicates user information among domain controllers.

Getting ready
In this recipe, we will be using our two file servers, namely FS1 and FS2, to configure
a DFS namespace. We will add folders to the DFS namespace and configure replication
between the servers.

How to do it...
Carry out the following steps to configure DFS and DFSR replication:

1. Create the shares for the DFS root:
Invoke-Command -ComputerName FS1, FS2 -scriptblock{
New-Item C:\Shares\Public -ItemType Directory
New-SmbShare -Name Public -Path C:\Shares\Public -FullAccess

http://blogs.technet.com/b/clausjor/archive/2012/06/07/smb-transparent-failover-making-file-shares-continuously-available.aspx
http://blogs.technet.com/b/clausjor/archive/2012/06/07/smb-transparent-failover-making-file-shares-continuously-available.aspx

Chapter 6

219

Everyone
}

2. Create the DFS root on both servers:
New-DfsnRoot -TargetPath \\FS1\Public -Type DomainV2
New-DfsnRootTarget -TargetPath \\FS2\Public

3. Create the shares for Marketing and Sales:
Invoke-Command -ComputerName FS1, FS2 -ScriptBlock{
New-Item C:\Shares\Marketing -ItemType Directory
New-Item C:\Shares\Sales -ItemType Directory
New-SmbShare -Name Marketing -Path C:\Shares\Marketing -FullAccess
Everyone
New-SmbShare -Name Sales -Path C:\Shares\Sales -FullAccess
Everyone
}

4. Add the new shares to the DFS root:
New-DfsnFolder -Path \\corp\Public\Marketing -TargetPath \\FS1\
Marketing
New-DfsnFolder -Path \\corp\Public\Sales -TargetPath \\FS1\Sales
New-DfsnFolderTarget -Path \\corp\Public\Marketing -TargetPath \\
FS2\Marketing
New-DfsnFolderTarget -Path \\corp\Public\Sales -TargetPath \\FS2\
Sales

5. Create a DFSR replication group:
DfsrAdmin RG New /RgName:Public /Domain:corp.contoso.com

6. Add the file servers to the replication group:
DfsrAdmin Mem New /RgName:Public /MemName:FS1 /Domain:corp.
contoso.com
DfsrAdmin Mem New /RgName:Public /MemName:FS2 /Domain:corp.
contoso.com

7. Create replication folders:
DfsrAdmin Rf New /RgName:Public /RfName:Marketing /RfDfspath:\\
corp.contoso.com\Public\Marketing /force
DfsrAdmin Rf New /RgName:Public /RfName:Sales /RfDfspath:\\corp.
contoso.com\Public\Sales /force

Managing Network Shares with PowerShell

220

8. Configure the replication folder paths:
DfsrAdmin Membership Set /RgName:Public /RfName:Marketing /
MemName:FS1 /LocalPath:C:\Shares\Marketing /MembershipEnabled:true
/IsPrimary:true /force
DfsrAdmin Membership Set /RgName:Public /RfName:Marketing /
MemName:FS2 /LocalPath:C:\Shares\Marketing /MembershipEnabled:true
/IsPrimary:false /force
DfsrAdmin Membership Set /RgName:Public /RfName:Sales /MemName:FS1
/LocalPath:C:\Shares\Sales /MembershipEnabled:true /IsPrimary:true
/force
DfsrAdmin Membership Set /RgName:Public /RfName:Sales /
MemName:FS2 /LocalPath:C:\Shares\Sales /MembershipEnabled:true /
IsPrimary:false /force

9. Create connections between the servers:
DfsrAdmin Conn New /RgName:Public /SendMem:corp\FS1 /Recvmem:corp\
FS2 /ConnEnabled:true
DfsrAdmin Conn New /RgName:Public /SendMem:corp\FS2 /Recvmem:corp\
FS1 /ConnEnabled:true

How it works...
We start by configuring folders and CIFS shares for the DFS root. We use Invoke-Command to
execute the commands on both servers simultaneously.

In step 2, we create the DFS root. We start by creating the DFS root on server FS1 at \\FS1\
Public and configure it as a domain DFS root. This type of DFS root is more flexible and
allows for replication and other location-aware features. We then add \\FS2\Public as
an additional target for the root.

Now that the root is configured, in step 3 we set up additional shares to be added to the
DFS root. In this case, we are creating two folders and two CIFS shares: Marketing and
Sales. We default the permissions for these shares to full access for everyone, which is
not a preferred configuration in a production environment.

It is possible to create folders directly inside the DFS root. This type
of configuration limits the scalability and functions of DFS. Instead,
it is best practice to create additional file shares and add them to
the DFS tree.

In step 4, we add our new shares to the DFS tree. We first use New-DfsnFolder to add the
share in the DFS, and then use New-DfsnFolderTarget to add additional targets to the DFS
object. Here, we are only configuring two targets; however multiple targets can be configured for
each share across multiple servers. At this point our DFS configuration is complete.

file:///\\FS1\Public
file:///\\FS2\Public

Chapter 6

221

Once our DFS hierarchy is created, we can create our replication policies. To manage
replication we use the DfsrAdmin.exe tool found in the Windows directory. DfsrAdmin
includes built-in help that can be viewed by calling DfsrAdmin.exe /?.

In step 5, we use dfsradmin rg to create a new replication group named Public in our
corp.contoso.com domain. A replication group is used to contain the servers, shares,
and replication policies.

Next, we call dfsradmin mem to add our file servers as members to the new replication group.

In step 7, we use dfsradmin rf to add our DFS folders to the new replication group. This
command creates a replication folder that links the newly-created replication group to the
DFS folders on the file servers.

In step 8, we configure the replication folders. We call dfsradmin membership set for
each server/share included in the replication group. This configures the replication folder
with the local folder on the file server. Additionally, the /IsPrimary:true switch configures
FS1 as the primary source of information for both shares. When replication begins, the
primary source will overwrite any conflicting items on the target servers.

Finally, we use dfsradmin conn new to create replication connections between the file
servers. Here, we create two connections: the first from FS1 to FS2, and the second from
FS2 to FS1. Additional servers and links can be configured, including cross-site links in
order to replicate data to other locations.

Configuring BranchCache
BranchCache is a technology designed by Microsoft to ease file and website access in remote
branch offices. These sites traditionally utilize slow WAN links, resulting in slow access to
centralized services.

Similar to a proxy server, BranchCache intelligently caches information requests across a WAN
link. Once in the cache, subsequent requests are fulfilled by the cache instead of resending
the information across the network.

There are two types of BranchCache: file servers and web servers. As the names suggest
BranchCache for file servers caches information accessed from CIFS shares, while
BranchCache for web servers caches information accessed from web sites. Windows clients
utilize group policies to define if they should use BranchCache and how to discover the
BranchCache resources.

Managing Network Shares with PowerShell

222

Getting ready
In this recipe, we will be working in an Active Directory environment with a remote site similar
to the one shown in the next figure. In the corporate office, there is a file server FS1, and at
the remote office, there is a BranchCache server named BC1. The two sites are joined by
a WAN link.

We will also create a Group Policy (GPO) for the servers and clients in the branch office.
This group policy will set the following registry keys on the client:

Location Setting Value
HKLM\Software\Policies\Microsoft\
PeerDisk\Service

Enable 1

HKLM\Software\Policies\Microsoft\
PeerDisk\CooperativeCaching

Enable 1

HKLM\Software\Policies\Microsoft\
PeerDisk\HostedCache\Discovery

SCPDiscoveryEnabled 1

How to do it...
Carry out the following steps to configure BranchCache:

1. Create a Group Policy (GPO) for the clients in the remote office:
New-GPO -Name "BranchCache Client"

2. Add the appropriate registry values to the GPO:
Set-GPRegistryValue -Name "BranchCache Client" `
-Key HKLM\SOFTWARE\Policies\Microsoft\PeerDist\Service `
-Valuename Enable -Value 1 -Type DWord
Set-GPRegistryValue -Name "BranchCache Client" `

Chapter 6

223

-Key HKLM\SOFTWARE\Policies\Microsoft\PeerDist\CooperativeCaching
`
-Valuename Enable -Value 1 -Type DWord
Set-GPRegistryValue -Name "BranchCache Client" `
-Key HKLM\SOFTWARE\Policies\Microsoft\PeerDist\HostedCache\
Discovery `
-ValueName SCPDiscoveryEnabled -Value 1 -Type DWord

3. Apply GPO to the branch site as follows:
New-GPLink -Name "BranchCache Client" -Target Branch

4. Install BranchCache on all participating systems in the following way:
Invoke-Command –ComputerName FS1, BC1, Client1 –ScriptBlock {
Install-WindowsFeature BranchCache, FS-BranchCache
-IncludeManagementTools
}

This step is only needed if the client computers are running Windows
Server 2012. Windows 8 has the BranchCache client installed
automatically and it just needs to be enabled.

5. Publish the BranchCache web server:
Publish-BCWebContent -Path C:\InetPub\WWWRoot

6. Publish the BranchCache file server:
Publish-BCFileContent -Path C:\Shares\Sales

7. Configure the BranchCache host:
Enable-BCHostedServer –RegisterSCP

8. Update BranchCache clients:
GPUpdate /force
Restart-Service peerdistsvc

How it works...
We start by creating a group policy named BranchCache Client for our clients and
servers in the remote branch. In this GPO, we add three settings: Service—which enables
the BranchCache server, CooperativeCaching—which specifies the caching type, and
Discovery—which enables discovery of the BranchCache servers via DNS. We then link the
new GPO to our remote branch site.

Managing Network Shares with PowerShell

224

In step 4, we install the BranchCache feature on all participating systems. This is performed
on the file and web servers that host the content, the BranchCache server, and the client
systems. In this scenario, there are three systems included: FS1—the file server hosting the
content, BC1—the remote BranchCache server, and Client1—our first BranchCache client.

In steps 5 and 6, we use PublishBCWebContent and PublishBCFileContent to
publish the content to be cached. This process configures the necessary information for
the BranchCache clients to identify when content has changed and the cached content is
out of date.

Lastly, we update the BranchCache clients. First, we execute GPUpdate to ensure the client
has the latest caching policies. Then; we restart the peerdistsvc service, which performs
the caching process on the clients and servers. This ensures that the clients have the
updated policy from the GPO.

There's more...
When a file or web content is accessed from the remote site, it will be intelligently cached by
the BranchCache server. When a second client in the site accesses the same content, instead
of being accessed across the WAN link, the content will be provided by the caching server.

To confirm that the data is being cached, you can execute Get-BCStatus from the
BranchCache server BC1. The result will be similar to that shown in the following screenshot:

The CurrentActiveCacheSize shows how much data is currently in the cache and ready
to service additional clients.

See also
For more information about using BranchCache see http://technet.microsoft.
com/en-us/library/jj862369.aspx and http://www.microsoft.com/en-us/
download/details.aspx?id=30418.

http://technet.microsoft.com/en-us/library/jj862369.aspx
http://technet.microsoft.com/en-us/library/jj862369.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=30418
http://www.microsoft.com/en-us/download/details.aspx?id=30418

Managing Windows
Updates with

PowerShell

In this chapter, we will cover the following recipes:

 f Installing Windows Server Update Services

 f Configuring WSUS update synchronization

 f Configuring the Windows update client

 f Creating computer groups

 f Configuring WSUS auto-approvals

 f Reporting missing updates

 f Installing updates

 f Uninstalling updates

 f Configuring WSUS to inventory clients

 f Creating an update report

 f Exporting WSUS data to Excel

7

Managing Windows Updates with PowerShell

226

Introduction
Windows Server Update Services (WSUS) is a feature included in Windows Server 2012 that
allows administrators to manage the distribution of updates, hotfixes, and service packs to
clients. WSUS downloads updates from the public Microsoft Update servers, and clients then
connect to the WSUS server to download and install the updates. WSUS allows administrators
to control which updates are installed in their environment, enforce their installation, and
report on compliance.

This chapter details the installation and configuration of WSUS as well as the Windows Update
client. Additionally, this chapter will include methods to automate update installation, report
on installed updates, and report on hardware and software inventory.

Installing Windows Server Update Services
Microsoft Windows Server Update Services is a built-in feature of Server 2012 that can be
installed in any Server 2012 edition. The update service provides simplified, centralized
management of updates in your environment. This feature inventories the updates installed
on computers, downloads the updates, and then distributes them to clients as defined by
the administrator.

For WSUS to function, two steps are needed: install the Update Services feature, and perform
the initial configuration, which is referred to as the postinstall phase. This postinstall phase
finalizes the WSUS installation by configuring the database and location to store the updates.

Getting ready
To perform this recipe, we will be using a domain-joined server with access to the Internet.
Once the Update Services feature is installed, we will perform the initial configuration of
the system and perform the initial update synchronization. All of the tasks shown will be
performed locally on the update server.

Windows Server Update Services can be deployed in many different
configurations, for example, a secure environment without Internet
access, or a large corporation with multiple sites. In this recipe, we will be
deploying a simple, single server configuration.

Chapter 7

227

How to do it...
Carry out the following steps in order to install Windows Server Update Services:

1. Install the UpdateServices feature:
Install-WindowsFeature UpdateServices -IncludeManagementTools

2. Perform the initial configuration:
New-Item E:\MyContent -ItemType Directory
& 'C:\Program Files\Update Services\Tools\WsusUtil.exe'
postinstall contentdir=e:\Mycontent

3. Review the current synhronization settings:
$myWsus = Get-WsuscServer
$myWsus.GetSubscription()

When executed, we will see the current configuration as shown in the
following screenshot:

4. If you are using a proxy server to access the internet, then configure for using a
proxy (optional) as follows:
$wuConfig = $myWsus.GetConfiguration()
$wuConfig.ProxyName = "proxy.corp.contoso.com"
$wuConfig.ProxyServerPort = 8080
$wuConfig.UseProxy = $true
$wuConfig.Save()

5. Perform the initial synchronization (only syncs categories):
$mySubs = $myWsus.GetSubscription()
$mySubs.StartSynchronizationForCategoryOnly()

Managing Windows Updates with PowerShell

228

6. Get a report on the synchronization status as follows:
$mySubs.GetSynchronizationProgress()
$mySubs.GetSynchronizationStatus()
$mySubs.GetLastSynchronizationInfo()

When completed, we will see the synchronization results as shown in the
following screenshot:

How it works...
We start by installing and configuring the UpdateServices feature on our server. To install,
we simply use Install-WindowsFeature. Once installed, there is an initial configuration
that needs to take place. At its simplest, we use the contentdir switch to define the
directory for the downloaded content to be placed. Additionally, if you have an existing SQL
server on which you would like to host the WSUS database, you can specify it by using the
SQL_Instance_Name switch.

The & symbol used in step 2 at the beginning of the postinstall
command signals PowerShell to execute a remote command and not return
to the Command Prompt until the command is finished. We then use this
as a signal the system is ready to continue with the configuration.

Next, we create a connection to the WSUS server and review the current synchronization
settings. By default, SynchronizeAutomatically is set to False. This tells
us that the system is configured to not synchronize automatically. In addition, the
LastSynchronizationTime shows 1/1/0001 12:00:00 AM because no synchronization
has occurred yet. In step 4, if a proxy server is used to access the Internet, we configure
Windows Update to use the proxy server. This is accomplished by first retrieving the WSUS server
configuration. Then, we update the configuration with the ProxyName, ProxyServerPort,
and UseProxy values. Finally, we call the Save() method to save the configuration to the
server. If no proxy server is required in your environment, this step can be skipped.

Chapter 7

229

In order to further configure WSUS, we need to perform an initial synchronization. We start
by calling the GetSubscription() method to load the current subscription information.
We then call StartSynchronizationForCategoryOnly() method to perform the initial
synchronization. The initial synchronization does not download any updates; however, it
contacts Microsoft's update servers and downloads the update category information. This
includes information about the currently supported products and types of updates available
for download.

Finally, we report on the synchronization status. Depending on the speed of your network
connection and the number of updates being synchronized, the synchronization process
can take a while to complete. Here we are executing three different commands: the first
command, Get-SynchronizationProgres(), returns the current synchronization
progress including the number of items to process and items currently processed.
The second command, GetSynchronizationStatus(), returns the current status
(Processing or NotProcessing) of the synchronization process. The last command,
GetLastSynchronizationInfo(), returns information about the last synchronization
that occurred.

There's more...
As Windows Update uses the HTTP and BITS protocols, it is possible to load balance clients
among multiple update servers. To accomplish this, we can configure Network Load Balancing
among the update servers, similar to balancing an IIS site. Information on configuring a web
server for load balancing can be found in the Monitoring load balancing across NLB nodes
recipe in Chapter 3, Managing IIS with PowerShell.

See also
For more information on the available PowerShell cmdlets for WSUS, see http://technet.
microsoft.com/en-us/library/hh826166.aspx.

Configuring WSUS update synchronization
Once the initial synchronization is finished, we can configure what applications and types of
updates we want WSUS to scan and patch. Once identified, during the next synchronization
process, the server will download the scanning criteria for those updates. Additionally, we
can configure the synchronization process to occur automatically throughout the day, and
without intervention.

http://technet.microsoft.com/en-us/library/hh826166.aspx
http://technet.microsoft.com/en-us/library/hh826166.aspx

Managing Windows Updates with PowerShell

230

Getting ready
For this recipe, we will be using our server that has just finished the initial synchronization,
similar to the prior recipe. In this recipe, we will only be synchronizing the information for the
following products:

 f Forefront Client Security

 f SQL Server 2008 R2

 f Office

 f Windows

Additionally, we will specify the following update types, or classifications, to synchronize:

 f Update Rollups

 f Security Updates

 f Critical Updates

 f Definition Updates

 f Service Packs

 f Updates

These steps can also be performed on an existing update server, but care should be taken as
this process will overwrite any existing configurations.

How to do it…
Carry out the following steps to configure WSUS update synchronization:

1. Define the product categories to include, as follows:
$myProducts = Get-WsusProduct | `
Where-Object {$_.Product.Title -in ('Forefront Client Security', `
'SQL Server 2008 R2', 'Office', 'Windows')}
$myProducts | Set-WsusProduct

2. Define the update classifications to include, as follows:
$myClass = Get-WsusClassification | `
Where-Object { $_.Classification.Title -in ('Update Rollups', `
'Security Updates', 'Critical Updates', 'Definition Updates', `
'Service Packs', 'Updates')}
$myClass | Set-WsusClassification

Chapter 7

231

3. Initiate synchronization:
$mySubs = $myWsus.GetSubscription()
$mySubs.StartSynchronization()

4. Configure automatic synchronization:
$mysubs = $myWsus.GetSubscription()
$mysubs.SynchronizeAutomatically = $true
$mysubs.NumberOfSynchronizationsPerDay = 1
$mysubs.Save()

How it works…
We start our process by identifying the products that we want WSUS to patch. We do this by
calling Get-WsusProduct to return all available products and filtering based on the title. The
filtered contents are then piped into Set-WsusProduct to set the products to synchronize in
the future. In this instance, we are including in only four products: Forefront Client Security, SQL
Server 2008 R2, Office, and Windows. Different environments will include different products.

In most environments, not all products updated by WSUS exist, so this step helps to limit the
downloading and testing that is necessary. Additionally, there may be some products in your
environment that business requirements mandate that you patch manually. An example of
this is a mail server or other critical component that requires manually shutting down and
restarting of services when patching.

In step 2, we identify the types of updates to include. This time we call Get-
WsusClassification to return the available classifications, and filter based on the title
of the classification. The filtered list is then piped into Set-WsusClassification to set
the classification types to include in the synchronization.

In step 3, we call StartSynchronization() to initiate the update synchronization.
This downloads details about the updates and information on how WSUS will identify whether
the updates are needed or are already installed.

Lastly, we configure the synchronization to occur automatically during the day so
that manual effort is not required to update the WSUS server. First, we set
SynchronizeAutomatically to $true to enable automatic synchronization,
then we set NumberOfSynchronizationsPerDay to 1. WSUS can be configured to
synchronize up to 24 times a day; however, normally one or two times per day is sufficient.

Managing Windows Updates with PowerShell

232

There's more...
A full list of available products and update types can be viewed by executing the following
commands in PowerShell. This will help identify which products and categories are available
to include in steps 1 and 2 before .

 f To list all available products for WSUS, use the Get-WsusProduct command.

 f To list all available classifications, use the Get-WsusClassification command.

Configuring the Windows update client
The Windows update client on servers and workstations default to downloading updates from
Microsoft's public update servers. In a business environment, this is not always desirable due
to unpredictable installation schedules and potentially varied patch revisions.

Once the update server is configured, we can configure the Windows update client. At its most
simplistic configuration, the client configuration includes the address of the update server and
a setting instructing the client to use the update server.

Getting ready
The simplest way to configure the clients is to create one or more group policies that define
the address of the local update servers. This group policy can then be deployed to the entire
Active Directory (AD) environment, specific sites, or only a subset of computers.

Our group policy will define the following registry setting on our clients:

Path Name Value
HKLM\Software\Policies\
Microsoft\Windows\
WindowsUpdate\AU

UseWUServer 1

HKLM\Software\Policies\
Microsoft\Windows\
WindowsUpdate\AU

AUOptions 2

HKLM\Software\Policies\
Microsoft\Windows\
WindowsUpdate

WUServer http://update.corp.
contoso.com:8530

HKLM\Software\Policies\
Microsoft\Windows\
WindowsUpdate

WUStatusServer http://update.corp.
contoso.com:8530

http://update.corp.contoso.com:8530
http://update.corp.contoso.com:8530
http://update.corp.contoso.com:8530
http://update.corp.contoso.com:8530

Chapter 7

233

How to do it...
Carry out the following steps in order to configure the Windows Update client:

1. On the update server, confirm the WSUS address and port:
Get-WsusServer | Format-List *

2. Create the group policy:
New-GPO -Name "WSUS Client"

3. Link the group policy to a site:
New-GPLink -Name "WSUS Client" -Target "DC=Corp,DC=Contoso,DC=Com"

4. Add registry key settings to the group policy to assign the WSUS server:
$wuServer = "http://update.corp.contoso.com:8530"
Set-GPRegistryValue -Name "WSUS Client" `
-Key "HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU" `
-ValueName "UseWUServer" -Type DWORD -Value 1
Set-GPRegistryValue -Name "WSUS Client" `
-Key "HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU" `
-ValueName "AUOptions" -Type DWORD -Value 2
Set-GPRegistryValue -Name "WSUS Client" `
-Key "HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate" `
-ValueName "WUServer" -Type String -Value $wuServer
Set-GPRegistryValue -Name "WSUS Client" `
-Key "HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate" `
-ValueName "WUStatusServer" -Type String -Value $wuServer

5. On the client, update the group policy to load the new settings (optional):
Gpupdate /force

6. Initiate a update scan on the client (optional):
Wuauclt /detectnow

How it works...
We start by using Get-WsusServer to review the Windows update server configuration.
Specifically, we are looking for the values on the lines labeled PortNumber and
UseSecureConnection. This defines how clients will connect to the update server.
The results of these values will help define the connection in our group policy.

Managing Windows Updates with PowerShell

234

In the second step, we use New-GPO to create a new group policy named WSUS Client. This
policy will house all the settings necessary for our clients to access our WSUS server. A best
practice for group policies is to create a new policy for each setting. By creating a separate
policy for the update server, we can easily change this or other settings in the future.

Next, in step 3, we use New-GPLink to link our new group policy to the root of our domain.
Because we are placing this policy at the root of the domain, all domain clients will receive
the policy. If instead we want to target a specific OU, we can change the –Target switch to
a specific OU such as ou=desktops, dc=corp, dc=contoso, or dc=com.

In step 4, we then add the appropriate values to the group policy. Here, we start by defining our
update server address by using HTTP or HTTPS and the port number identified in step 1. We
then call Set-GPRegistryValue to assign the attributes needed to use the update server.

Finally, we update the client and scan for updates. We can manually initiate the client update
by executing GPUpdate /force, which tells the client to download the latest group policies
and apply them. Then, we initiate a scan by executing Wuaclt /detectnow. These steps
are not necessary for the clients to function properly as they will occur automatically during
the next GPO refresh and scanning cycle. However, it is useful to manually initiate the
scanning to confirm the systems are reporting properly.

There's more...
In a non-domain environment, or with non-domain joined computers, you can configure clients
to use the update server directly. To accomplish this, we can either use a local computer policy
or assign the registry keys directly. Following is an example of configuring the local registry
keys of the local client to use the update server:

New-ItemProperty -PropertyType String `
-Path HKLM:\Software\Policies\Microsoft\Windows\WindowsUpdate `
-Name WUServer -Value "http://update.corp.contoso.com:8530"
New-ItemProperty -PropertyType String `
-Path HKLM:\Software\Policies\Microsoft\Windows\WindowsUpdate `
-Name WUStatusServer -Value "http://update.corp.contoso.com:8530"
New-ItemProperty -PropertyType DWord `
-Path HKLM:\Software\Policies\Microsoft\Windows\WindowsUpdate\AU `
-Name UseWUServer -Value 1

Here, we are calling New-ItemProperty to create/update registry values on the
local computer. These commands are setting the WUServer, WUStatusServer, and
UseWUServer values; these are the minimum settings needed to use a WSUS server.

Chapter 7

235

See also
 f More information about the Group Policy PowerShell cmdlets can be found at

http://technet.microsoft.com/en-us/library/ee461027.aspx

 f More information about the available WSUS client registry keys can be found at
http://technet.microsoft.com/en-us/library/dd939844(v=ws.10).
aspx

Creating computer groups
One of the great features of Windows Server Update Services is its ability to group computers.
Once a group is created, updates can be deployed and reporting can be performed on
a group-by-group basis. This allows for servers and clients to be grouped by application,
criticality, or business unit, each with different update policies applied to them.

In this recipe, we will be using an update server with multiple clients. We will be creating a
group for the domain controllers in our environment in order to maintain a consistent patch
level on the systems.

Getting ready
For this recipe we will be using a WSUS server configured as shown in the Configuring
WSUS update synchronization recipe with one or more clients configured as shown in
the Configuring the Windows update client recipe.

How to do it...
In order to create computer groups, carry out the following steps:

1. Create the computer group:
$myWsus = Get-WsusServer
$myWsus.CreateComputerTargetGroup("Domain Controllers")

2. Add clients to the computer group:
Get-WsusComputer -NameIncludes corpdc | `
Add-WsusComputer -TargetGroupName "Domain Controllers"

3. List the clients in the computer group:
$myGroup = $myWsus.GetComputerTargetGroups() | `
Where-Object Name -eq "Domain Controllers"
Get-WsusComputer | `
Where-Object ComputerTargetGroupIDs -Contains $myGroup.Id

http://technet.microsoft.com/en-us/library/ee461027.aspx
http://technet.microsoft.com/en-us/library/ee461027.aspx
http://technet.microsoft.com/en-us/library/dd939844(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/dd939844(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/dd939844(v=ws.10).aspx

Managing Windows Updates with PowerShell

236

When executed, the contents of the new computer group will be displayed as shown in the
following screenshot:

How it works...
We start by connecting to the WSUS server and calling CreateComputerTargetGroup to
create a computer group named Domain Controllers.

In step 2, we add our domain controller to the new group. We do this by first calling Get-
WsusComputer to search for clients of the update server with a name like corpdc. This
command allows us to search using the NetBIOS name of the server and return the object
even if it has been identified by using its fully-qualified name. The result is piped into Add-
WsusComputer to add the computers to our new group as shown in the preceding screenshot.

Lastly, we can use PowerShell to return the list of clients in the group. We start by calling
GetComputerTargetGroups to search for computer groups and filtering for our Domain
Controllers group. We then use Get-WsusComputer to return all of the computers, and
then filter this list based on the group membership to return the members of our group.

Configuring WSUS auto-approvals
Another great feature of Windows Server Update Services is the ability to automatically
approve updates. This allows the administrator to define specific application updates
or types of update to be automatically downloaded and installed on client computers.

Getting ready
It is not uncommon in some environments to create a rule that automatically approves all
critical security updates and enforces the automatic installation. In this recipe, we will create
a rule to automatically install all Critical Updates and all Definition Updates to our
newly created Domain Controllers group.

Chapter 7

237

How to do it...
WSUS auto-approvals can be configured by using the following steps:

1. Create the auto-approval rule:
$myWsus = Get-WsusServer
$myRule = $myWsus.CreateInstallApprovalRule("Critical Updates")

2. Define a deadline:
$myDeadline = New-Object `
Microsoft.UpdateServices.Administration.
AutomaticUpdateApprovalDeadline
$myDeadline.DayOffset = 3
$myDeadline.MinutesAfterMidnight = 180
$myRule.Deadline = $myDeadline

3. Add update classifications to the rule:
$myClass = $myRule.GetUpdateClassifications()
$myClass.Add(($myWsus.GetUpdateClassifications() | `
Where-Object Title -eq 'Critical Updates'))
$myClass.Add(($myWsus.GetUpdateClassifications() | `
Where-Object Title -eq 'Definition Updates'))
$myRule.SetUpdateClassifications($myClass)

4. Assign the rule to a computer group:
$myGroups = New-Object `
Microsoft.UpdateServices.Administration.
ComputerTargetGroupCollection
$myGroups.Add(($myWsus.GetComputerTargetGroups() | `
Where-Object Name -eq "Domain Controllers"))
$myRule.SetComputerTargetGroups($myGroups)

5. Enable and save the rule:
$myRule.Enabled = $true
$myRule.Save()

Managing Windows Updates with PowerShell

238

6. Review the rules and classifications to confirm the settings:
$myWsus.GetInstallApprovalRules()
$myApproval = $myWsus.GetInstallApprovalRules() | `
Where-Object Name -eq 'Critical Updates'
$myApproval.GetUpdateClassifications() | Select-Object Title
$myApproval.GetComputerTargetGroups()

When completed, we will see the current rules and target groups as shown in the
following screenshot:

How it works...
We start off by connecting to the update server and calling CreateInstallApprovalRule
to create our approval rule. In this situation, we name the rule Critical Updates because
we are creating a rule that will automatically apply all updates classified as critical to a set
of computers.

In step 2, we create an installation deadline. The deadline provides a grace period
for users and administrators to install the updates manually. If the updates are not
installed by the deadline, they will be automatically installed. First, we create an
AutomaticUpdateApprovalDeadline object. Next, we define the DayOffset to identify
how many days (3) after the update approval that the update will be forced. Then, we define
MinutesAfterMidnight, which identifies what time during the day (3 a.m. in our case) the
updates will be installed. Then, we apply our new deadline to our approval rule.

Chapter 7

239

Next, we identify what update types we want to be included in our deadline. First we call
GetUpdateClassifications to get a list of the current update types in our rule and
place them into the $myClass object. Next, we call $myClass.Add in order to add all
Critical Updates and Definition Updates to the classifications. Finally, we use
SetUpdateClassifications to apply the update classifications to our approval rule.

In step 4, we assign our rule to our computer group. First, we create a
ComputerTargetGroupCollection object. Then, we use GetComputerTargetGroups
to list the computer groups and filter on the group name. Finally, we call
SetComputerTargetGroups to apply the computer groups to our approval rule.

Finally, we call Enable and Save() to enable and save the rule. Enabling the rule activates
it and allows computers to apply the included updates. Saving the rule commits the
configurations that we have applied.

When finished, we call GetInstallApprovalRules and GetComputerTargetGroups to
review the new automatic approval rule that we have created and the appropriate configuration.

Reporting missing updates
When managing updates, the first step Windows performs is scanning for reporting on the
applicable updates. This is performed automatically by the Windows update client randomly
during the day and reported to the update server. However, this process can be manually
initiated and the results viewed at the local client.

Getting ready
In this recipe, we will be working with a client that has already been configured with a local
update server.

How to do it...
Complete the following steps to report on missing updates:

1. Create the searcher object:
$searcher = New-Object -ComObject Microsoft.Update.Searcher
$searcher.Online = $true
$searcher.ServerSelection = 1

2. Define the search criteria:
$results = $searcher.Search('IsInstalled=0')

Managing Windows Updates with PowerShell

240

3. Display the results:
$results.Updates | `
Select-Object @{Name="UpdateID"; `
Expression={$_.Identity.UpdateID}}, Title

When executed, the list of available updates will be returned as shown in the
following screenshot:

How it works...
PowerShell uses ComObject to access the local update client. For the most part, this
functions exactly the same way as the managed code objects used for the update server.
However, as shown here, they are accessed slightly differently. Once we create the
Microsoft.Update.Searcher object, we configure the object settings.

In this example, we are configuring ServerSelection = 1, which
tells the update client to use the local update server. If we change this
to ServerSelection = 2, the update client will search against
Microsoft's public update servers.

Next, we define our search criteria and begin scanning by calling $searcher.Search.
In this example we use the simple criteria of IsInstalled=0, to show updates that are
applicable to the system. The results of the searcher are saved to a $results variable.
This criteria can be modified to scan for specific updates, certain types of updates, or updates
for specific products.

Lastly, we call $results.Updates to return a report of all applicable updates for the
system. Here we are returning the basic information about the updates; however, more
information can be returned, depending upon your needs.

Chapter 7

241

There's more...
All update client activity for a system is tracked in a central log file at C:\Windows\
WindowsUpdate.log. This log file is useful for viewing the activity of the update
client and confirming the functionality of the system.

There are several utilities that will allow you to view the log file live as it is updated.
An example of one such utility is shown in the following screenshot:

Installing updates
Once the applicable updates are identified, the next step for managing updates on the
client is to install the updates themselves. This process involves confirming the updates are
necessary, downloading the updates, and installing the updates.

Getting ready
This recipe is similar to the prior recipe in that it starts by searching for missing updates
on the local system. This list of missing updates is then used to initiate the download and
installation of these updates.

Managing Windows Updates with PowerShell

242

How to do it...
The updates can be installed through the following steps:

1. Set up the necessary update client objects:
$searcher = New-Object -ComObject Microsoft.Update.Searcher
$updateCollection = New-Object -ComObject Microsoft.Update.
UpdateColl
$session = New-Object -ComObject Microsoft.Update.Session
$installer = New-Object -ComObject Microsoft.Update.Installer

2. Search for missing updates:
$searcher.online=$true
$searcher.ServerSelection=1
$results = $searcher.Search("IsInstalled=0")

3. Create a collection of applicable updates:
$updates=$results.Updates
ForEach($update in $updates){ $updateCollection.Add($update) }

4. Download the updates:
$downloader = $session.CreateUpdateDownloader()
$downloader.Updates = $updateCollection
$downloader.Download()

5. Install the updates:
$installer.Updates = $updateCollection
$installer.Install()

How it works...
We start by creating four objects to be used by the update client. The $searcher object is
the same as in the prior recipe and is responsible for searching for applicable updates. The
$updateCollection object will hold information about the applicable updates and their
install information. The $session object will handle the downloading of updates. And the
$installer object performs the installation of the updates.

In step 2, we search for the applicable updates. The search command is the same as in the
prior recipe.

Chapter 7

243

Sometimes it is only desired to install a specific update on a system. To
accomplish this, we can use the Reporting missing updates recipe to
identify the appropriate UpdateID. We then change the search command
to the following using appropriate UpdateID as shown:

$Results = $Searcher.Search("UpdateID='6965f95b-2b79-
4a6e-b4d1-d500c30e8c8e'")

We then use a ForEach loop to cycle through each applicable update. These updates are
then added to the $updateCollection object in preparation for download and installation.

In step 4, we download all applicable updates to the system. We start by calling $session.
CreateUpdateDownloader to create our downloader. We then add $updateCollection
to our downloader to identify which updates to include. Lastly, we call Download() to begin
downloading the updates. This uses the same download process as the native update client,
and automatically utilizes the included bandwidth protection and dynamic downloads provided
by the client.

Lastly, we install the updates. This starts by loading $upateCollection into $installer
object to identify the updates to install. We then call Install() to begin the update
installation. This will automatically install the updates in the appropriate order necessary to
ensure any dependencies are met. When finished installing, a return code and notification of
a pending reboot will be reported, as shown in the following screenshot:

In this result, we see that the update installation completed with RebootRequired set to
True. In order for the updates to complete the installation, we need to reboot our server.
Additionally, the installation returned a ResultCode of 3, meaning the installation
succeeded with errors. Following are the possible ResultCodes and their meanings:

Result Code Description
0 Not started
1 In progress
2 Succeeded
3 Succeeded with errors
4 Failed
5 Aborted

Managing Windows Updates with PowerShell

244

There's more...
Sometimes Microsoft releases updates, such as Service Packs, that cannot be installed at the
same time as other updates. Because of this, the first set of updates must be installed, the
system rebooted, and then additional updates can be installed.

If you are unsure of the updates applicable to a system, and you are installing all applicable
updates, it is suggested that you run the install multiple times. The multiple executions, with
reboots in between, will ensure that all applicable updates are installed.

Uninstalling updates
In addition to installing updates, PowerShell and the Windows update client can also uninstall
updates. This is occasionally necessary when an installed update causes an unexpected
result or compatibility issue.

The uninstall process for updates is similar to the installation process. The main difference
here is that we are searching for only one update or a subset of updates, and then calling
the UnInstall command.

Getting ready
In this recipe, we are working with a Windows client that has installed updates. We have
already identified that we wish to uninstall the update titled Update for Office File Validation
2010 (KB2553065), 64-bit Edition.

How to do it...
Carry out the following steps to uninstall the updates:

1. List the installed updates to identify which update will be removed:
$searcher = New-Object -ComObject Microsoft.Update.Searcher
$searcher.Online = $true
$searcher.ServerSelection = 1
$results = $searcher.Search('IsInstalled=1')
$results.Updates | `
Select-Object @{Name="UpdateID"; `
Expression={$_.Identity.UpdateID}}, Title

Chapter 7

245

When executed, the currently installed updates and update IDs are returned as
shown in the following screenshot:

2. Setup the necessary update client objects:
$updateCollection = New-Object -ComObject Microsoft.Update.
UpdateColl
$installer = New-Object -ComObject Microsoft.Update.Installer

3. Search for the appropriate update by UpdateID:
$searcher.online = $true
$searcher.ServerSelection = 1
$results = $searcher.Search("UpdateID='70cd87ec-854f-4cdd-8aca-
c272b6fe45f5'")

4. Create a collection of applicable updates:
$updates = $results.Updates
ForEach($update in $updates){ $updateCollection.Add($update) }

5. Uninstall the updates:
$installer.Updates = $updateCollection
$installer.UnInstall()

Managing Windows Updates with PowerShell

246

How it works...
We start by searching for the installed updates on our system. This is the same process as
the Reporting missing updates recipe, except this time the $searcher.Search string is
changed to 'IsInstalled = 1' to return the updates already installed. We then search
the results for Update ID matching the update "Update for Office File Validation 2010
(KB2553065), 64-bit Edition". In this case the first result in the list is the update that we
are interested in with UpdateID of 70cd87ec-854f-4cdd-8aca-c272b6fe45f5.

We next create the additional objects to be used by the update client to uninstall the update.
The $UpdateCollection object will hold information about the applicable updates and
their install information. The $Installer object performs the uninstallation of the updates.

In step 3, we perform the search again, this time limiting our query to the appropriate Update
ID. We save the results of the search into our $results variable.

Lastly, we create a collection for the updates and initiate the installer with the Uninstall()
command. This performs the uninstall of the update.

There's more...
In addition to the PowerShell commands shown here, we can also use the Windows Update
Standalone Installer command-line tool WUSA.exe included with Windows. The Windows
Update Standalone Installer is a stand-alone tool that can be used to install and uninstall
updates on a client.

To uninstall an update, open a command prompt with administrative credentials and execute
WUSA /Uninstall /KB:<kb number>. For example:

wusa /uninstall /kb:2553065

Configuring WSUS to inventory clients
In addition to scanning and reporting on client updates, Windows Server Update Services can
also report on the hardware and software inventory included in a system. While this won't
provide a complete asset inventory of your environment, it does provide up-to-date information
of your systems.

The Windows update client uses multiple methods (WMI queries, registry keys, file versions)
to scan for applicable updates. Once scanned, the results are reported to the update server
for reporting purposes.

The Windows update server includes a set of additional WMI queries that can be enabled to
report on the hardware and software on client computers. This information is scanned by the
client and reported back to the server. There are no built-in reports to display this information,
but once enabled, we can query the database directly.

Chapter 7

247

Getting ready
In this recipe we will be using a WSUS server that is configured with one or more clients.

How to do it...
Perform the following to begin collecting the client inventory:

1. Configure the update server to collect the inventory:
$wuConfig = $myWsus.GetConfiguration()
$wuConfig.CollectClientInventory = $true
$wuConfig.Save()

2. Initiate a scan on a client:
Wuauclt /detectnow

How it works...
We start on the update server and configure it to collect the client inventory. We start by
getting the current server configuration and placing it in the $wuConfig variable. Then, we
set the CollectClientInventory attribute to $true. Lastly, we commit the configuration
back to the server.

During a client's next polling cycle, it will automatically detect the updated configuration.
However, we can manually force a client to update by using Wuauclt.exe, in order to
confirm that the process is working properly.

WSUS instructs clients to inventory the following WMI classes:

 f Win32_Processor

 f Win32_BIOS

 f Win32_PCMCIAController

 f Win32_OperatingSystem

 f Win32_DiskDrive

 f Win32_LogicalDisk

 f Win32_NetworkAdapterConfiguration

 f Win32_NetworkAdapter

 f Win32_SoundDevice

 f Win32_VideoController

 f Win32_DesktopMonitor

Managing Windows Updates with PowerShell

248

 f Win32_ComputerSystem

 f Win32_Printer

 f WsusInternal_ARP

There's more...
Troubleshooting this inventory process can be difficult as it involves the Windows update
server, the update client, HTTP, WMI, and the system's registry. Following is an excerpt of the
WindowsUpdate.log file on a client, showing the start of the inventory collection process:

As we can see from the screenshot, we can confirm that the inventory process started
and completed successfully. The client has contacted the server and downloaded the
InventoryRules.cab file, which contains the instructions on what to inventory. The client
performs the inventory process and identifies the WSUS reporting URL to send the results.
Later in the log file, we can see the results being sent to the WSUS system.

See also
 f The Exporting WSUS data to Excel recipe

 f The Creating an update report recipe

Chapter 7

249

Creating an update report
Windows update server contains multiple built-in reports that provide administrators with
many of the details needed to perform their jobs. However, rare cases do exist where the built-
in reports don't fit your specific needs and a custom report must be created.

One example of needing a custom report is searching for systems missing a certain update.
This report could then be automatically processed by a script that would initiate installation of
the updates on the clients. Using PowerShell, this process can be done in a single step.

In this recipe, we will be directly querying the WSUS database on the update server by using
PowerShell. We will be using a SQL query to generate our custom report and then returning
the information back to PowerShell as DataSet.

Getting ready
In this recipe, we will be working with a WSUS server with one or more clients. Specifically,
we will be querying the Windows Internal Database which is used by the default installation
of WSUS.

How to do it...
An update report can be created by using the following steps:

1. Define the server and database:
$serverInstance = '\\.\pipe\MICROSOFT##WID\tsql\query'
$database = "SUSDB"
$connectionTimeout = 30
$queryTimeout = 120

In this step, $serverInstance is referring to the Windows Internal
Database location used by WSUS by default. If you chose to use a
separate SQL database during installation of WSUS, change the variable
to the necessary connect string.

2. Define the query:
$query= "select ct.FullDomainName, ct.IPAddress
, ic.Name, ici.KeyValue, ip.Name, ipi.Value
FROM tbComputerTarget ct
INNER JOIN tbInventoryClassInstance ici on ici.TargetID=ct.
TargetID
INNER JOIN tbInventoryClass ic on ic.ClassID=ici.ClassID
INNER JOIN tbInventoryPropertyInstance ipi on

Managing Windows Updates with PowerShell

250

ipi.ClassInstanceID=ici.ClassInstanceID
INNER JOIN tbInventoryProperty ip on ip.PropertyID=ipi.PropertyID"

3. Connect to the server:
$conn = New-Object System.Data.SqlClient.SQLConnection
$connectionString = "Server={0};Database={1};Integrated
Security=True;Connect Timeout={2}" `
-f $serverInstance, $database, $connectionTimeout
$conn.ConnectionString = $connectionString
$conn.Open()

4. Query the database:
$cmd = New-Object System.Data.SqlClient.SqlCommand($query,$conn)
$cmd.CommandTimeout=$queryTimeout
$da = New-Object System.Data.SqlClient.SqlDataAdapter($cmd)

5. Display the results:
$ds = New-Object system.Data.DataSet
[void]$da.fill($ds)
$conn.Close()
$ds.Tables | Format-Table

When executed, the client inventory will be displayed as shown in the following screenshot:

Chapter 7

251

How it works...
We start by logging on to the update server and defining our database connection. If you used
the default update server installation, then you are using the Windows Internal Database.
This database can only be accessed from the local server and it requires a specially-crafted
connection string as shown.

If you are using a full version of SQL, then the connection can be
performed remotely and you don't have to log on locally. Your DBA
should be able to help with the necessary connection string.

Next, we define our SQL query. The query shown is somewhat complex, but will return all of
the inventory information in the database (updates, hardware, and software) for all systems
managed by the update server. This is a good starting point to see what information is
available in your system.

In step 3, we connect to the SQL database. We start by creating a SQLConnection
object named $conn that is capable of accessing a SQL server. We then define the
$connectionString, which is used to select which server, which database, and how to
authenticate to the system. We add $connectionString to our $conn object and call
Open() to open our connection.

Next, we execute our query in the database. We create a SQLCommand object named $cmd
that contains the SQL query that we had defined and connection object previously created.
Then, we create a SqlDataAdapter object, $da, and execute the SQL query.

Finally, we return the results. First we create a DataSet object, $ds, and fill it with the results
from the SqlDataAdapter object. The SQL connection is closed, and then the contents of
$ds is displayed on the screen.

Managing Windows Updates with PowerShell

252

There's more...
One request that administrators often receive is for a report of the software installed in
the environment. If the update server is configured to inventory the clients, as shown in the
Configuring WSUS to inventory clients recipe, then this information can easily be retrieved.

To report on the installed software, we update the SQL query to the following:

$query= "Select DISTINCT ct.FullDomainName
, (Select TOP 1 i2.Value FROM tbInventoryPropertyInstance i2 WHERE
i2.ClassInstanceID = i1.ClassInstanceID AND i2.PropertyID = 98)
'DisplayName'
, (Select TOP 1 i2.Value FROM tbInventoryPropertyInstance i2 WHERE
i2.ClassInstanceID = i1.ClassInstanceID AND i2.PropertyID = 99)
'DisplayVersion'
, (Select TOP 1 i2.Value FROM tbInventoryPropertyInstance i2 WHERE
i2.ClassInstanceID = i1.ClassInstanceID AND i2.PropertyID = 101)
'Publisher'
FROM tbInventoryPropertyInstance i1
INNER JOIN tbInventoryClassInstance ici on i1.ClassInstanceID =
ici.ClassInstanceID
INNER JOIN tbComputerTarget ct on ici.TargetID = ct.TargetID
WHERE (Select TOP 1 i2.Value FROM tbInventoryPropertyInstance i2
WHERE i2.ClassInstanceID = i1.ClassInstanceID AND i2.PropertyID =
98) is not null"

The following screenshot is an example of the query in my test lab:

Chapter 7

253

See also
For more information about accessing the WSUS Windows Internal Database, see http://
blogs.technet.com/b/gborger/archive/2009/02/27/exploring-the-wsus-
windows-internal-database.aspx.

Exporting WSUS data to Excel
In addition to generating update reports in PowerShell, the results can also be exported
into Excel or other tools. By exporting the update or inventory reports to Excel, we can use a
familiar tool to view, filter, and display the information in ways that are useful to us.

Getting ready
In this recipe, we will be using the process in the prior recipe to query the update server
database. We will then return the resulting dataset and export it into a format that Excel
can utilize.

How to do it...
Carry out the following steps to export WSUS data to Excel:

1. Create the dataset object. This is the same process as the Creating an update
report recipe.

2. Export the dataset to an XML file:
$ds.Tables[0].WriteXml("C:\temp\inventory.xml")

http://blogs.technet.com/b/gborger/archive/2009/02/27/exploring-the-wsus-windows-internal-database.aspx
http://blogs.technet.com/b/gborger/archive/2009/02/27/exploring-the-wsus-windows-internal-database.aspx
http://blogs.technet.com/b/gborger/archive/2009/02/27/exploring-the-wsus-windows-internal-database.aspx

Managing Windows Updates with PowerShell

254

3. Open the XML file with Excel:

How it works...
We start by collecting the inventory information as in the prior recipe. Once the database
has been queried, it returns a dataset object, which is capable of hosting multiple tables.
We instruct PowerShell to return only the first table ($ds.Tables[0]) and then convert
the contents to an XML file.

Next, we open the XML file in Microsoft Excel. We can accomplish this by using File | Open on
the menu bar or simply drag-and-drop the XML file into Excel. You may be prompted regarding
how to open the XML file (shown in the following screenshot). Select As an XML table and
click on OK. Once opened, you can save the file as a standard Excel document.

Chapter 7

255

There's more...
Another method of exporting the data to Excel is to use the Export-Excel.ps1 PowerShell
script from http://www.powershellcommunity.org/Forums/tabid/54/aft/8420/
Default.aspx. This script accepts a dataset object as a parameter and creates an Excel
document. Unlike the WriteXML method, this script is capable of handling datasets with
multiple tables. Each table in the dataset will be displayed as a separate sheet in Excel.

To use this script, download the script on the page and save it as a PS1 file. Query the
database and reference the dataset object as shown in the following command:

Export-Excel.ps1 $ds

This command functions similar to the XML method; however, it interacts directly with Excel.
Because of this, the script requires Excel to be installed on the local computer, which may not
be ideal in a production environment.

http://www.powershellcommunity.org/Forums/tabid/54/aft/8420/Default.aspx
http://www.powershellcommunity.org/Forums/tabid/54/aft/8420/Default.aspx

8
Managing Printers

with PowerShell

This chapter covers the following recipes:

 f Setting up and sharing printers

 f Changing printer drivers

 f Reporting on printer security

 f Adding and removing printer security

 f Mapping clients to printers

 f Enabling Branch Office Direct Printing

 f Reporting on printer usage

Introduction
From an architectural standpoint, there have been major changes in Server 2012. New in
Server 2012 is the inclusion of Version 4 drivers, which greatly improves the installation and
support of printers and removes the need for cross-platform drivers. There are now two types
of printer drivers available: printer class and model-specific. Printer class drivers support a
wide range of devices with a single driver. Model-specific drivers are often distributed by the
printer manufacturer and support features specific to the printer.

Additionally in Server 2012, the print server no longer is used to distribute print drivers to
clients. Instead, clients use a point and print feature to send print jobs to the server. If print
drivers are desired on the clients, administrators can use software distribution methods to
install the driver on these clients.

Managing Printers with PowerShell

258

This chapter covers installing, managing, and updating printers on print servers. This includes
using PowerShell to map clients to printers, and generating usage reports for the printers.

Setting up and sharing printers
When setting up a print environment, often one of the first steps is to set up a print server.
The print server allows for a centralized location to configure and manage printers, change
configurations, and distribute print drivers. Additionally, a print server provides end users
with a single location in which to look for available printers, and automatically apply drivers
and administrative changes.

In this recipe, we will be setting up a print server to manage several network-based printers.
We will configure the server to share the printers to clients.

Getting ready
In this recipe, we will be using a Windows Server 2012 server to function as our print
server. Additionally, we will be accessing and sharing an HP LaserJet 9000 printer. The
printer is already assigned the IP of 10.0.0.200.

How to do it...
Carry out the following steps to install and share a printer:

1. Install the print server:
Add-WindowsFeature Print-Server –IncludeManagementTools

2. Create the printer port:
Add-PrinterPort -Name Accounting_HP -PrinterHostAddress
"10.0.0.200"

3. Add the print driver:
Add-PrinterDriver -Name "HP LaserJet 9000 PCL6 Class Driver"

4. Add the printer:
Add-Printer -Name "Accounting HP" -DriverName "HP LaserJet 9000
PCL6 Class Driver" -PortName Accounting_HP

5. Share the printer:
Set-Printer -Name "Accounting HP" -Shared $true -Published $true

Chapter 8

259

6. Review the printers to confirm the process:

Get-Printer | Format-Table -AutoSize

When executed, the currently installed printers will be displayed as shown in the
following screenshot:

How it works...
We start by adding the Print-Server feature to our print server. Along with the print server
role, this includes the Print Management tool and PowerShell cmdlets.

In step 2, we use Add-PrinterPort to create a port for the printer. Here, we are targeting
an IP-based network printer at 10.0.0.200. We provide the name Accounting_HP as an
easily recognizable name so that we can easily find it later.

Next, we call Add-PrinterDriver to install the driver. This process installs the driver onto
the server, however, the driver won't be used until it is configured for a printer.

It is best practice to only use the print drivers built-in to Windows or
provided via Windows Update. Custom drivers provided by vendors may
provide more functionality, but in environments with many different
types of printers they can cause conflicts.

In step 4, we use Add-Printer to add the printer to the print server. This process pairs
the printer port, Accounting_HP, with the print driver, and defines the printer name of
Accounting HP. At this point, the printer is functional; however, print jobs can only be
sent from the print server.

Lastly, we use Set-Printer in order to share the printer. By setting the –Shared switch to
$true, the other users on the network will be able to send print jobs to the printer. By setting
the –Published switch to $true, the printer is published in Active Directory for clients to
more easily find the printer.

Managing Printers with PowerShell

260

Changing printer drivers
Occasionally, print drivers need to be upgraded or changed for some reason. When using
a print server, this is significantly simpler because the print server holds the printer driver,
which means that we do not need to install the driver on all of the client machines.

In this example, we will be changing the print driver from a PCL6 driver to a PS driver for
the same model printer as used in the previous recipe.

Getting ready
In this recipe, we will update the driver of the printer created in the preceding Setting up
and sharing printers recipe.

How to do it...
To change the print driver, perform the following steps.

1. Install the print driver:
Add-PrinterDriver -name "HP LaserJet 9000 PS Class Driver"

2. List the installed printers to determine the name needed:

Get-Printer

When executed, the currently installed printers will be displayed as shown in the
following screenshot:

1. Change the driver:
Get-Printer -Name "Accounting HP" | Set-Printer -DriverName "HP
LaserJet 9000 PS Class Driver"

2. Confirm the printer is using the new driver:

Get-Printer | Format-Table –AutoSize

Chapter 8

261

When executed, the currently installed printers will be displayed as shown in the
following screenshot:

How it works...
We start by using Add-PrinterDriver to install our new print driver. This process is the
same as we used in the Setting up and sharing printers recipe when installing the printer
and simply adds the printer driver to the print server.

In step 2, we use Get-Printer to find our target printer and change the driver. This
command lists all of the installed printers on the system and helps confirm the name
of the printer that we need to change to change.

Next, we call Get-Printer and select our printer by name. We then use the Set-Printer
command with the –DriverName switch to define the new driver for our printer.

Lastly, we call Get-Printer again to review the new configuration. As we can see in the
image, the printer is now using the "HP LaserJet 9000 PS Class" driver.

The next time clients connect to the print server, the printer configuration on the client will
be updated and the clients will utilize the features of the new driver.

Reporting on printer security
When sharing printers, the default configuration is to allow all domain users to print to all
printers. Occasionally this is not a desired configuration as there may be special-purpose
printers or printers in restricted areas.

To manage this need, we can apply security on the printers themselves to limit which users
can perform various functions. We can use permissions to restrict who can print to specific
printers, or delegate administrative permissions to certain users.

In this recipe we will report on the printer security on the print server. This will iterate
through each printer on the server and return the security attributes assigned to each user.

Managing Printers with PowerShell

262

Getting ready
For this recipe we will be accessing a Server 2012 print server with one or more printers
installed and shared.

How to do it...
Perform the following steps to view the printer security:

1. Create a hash table containing printer permissions:
$pace = DATA {

ConvertFrom-StringData -StringData @'

131072 = ReadPermissions

131080 = Print

262144 = ChangePermissions

524288 = TakeOwnership

983052 = ManagePrinters

983088 = ManageDocuments

'@

}

2. Create an array of available permissions:
$flags = @(131072,131080,262144,524288,983052,983088)

3. Return a list of all printers:
$myPrinters = Get-WmiObject -Class Win32_Printer

ForEach ($printer in $myPrinters){

Write-Host "`nPrinter: $($printer.DeviceId)"

4. Get the Security Descriptor and Discretionary Access Control Lists (DACL)
for each printer:
$sd = $printer.GetSecurityDescriptor()

$myDACLs = $sd.Descriptor.DACL

ForEach ($dacl in $myDACLs) {

5. Iterate through each DACL and return:

Write-Host "`n$($dacl.Trustee.Domain)\$($dacl.Trustee.Name)"

ForEach ($flag in $flags){

If ($dacl.AccessMask -cge $flag){

Write-Host $pace["$($flag)"]

Chapter 8

263

}

}

}

}

When executed, the security permissions will be returned as shown in the following screenshot:

How it works...
We start in the first two steps by creating a hash table and array. The $pace hash table
allows us to perform lookups between the decimal permissions used by the server and the
human-readable text. The $flags array provides a lookup method to compare permissions.

In step 3, we call Get-WmiObject to query WMI and return a list of all printers on the local
system. We store the printers into the $myPrinters variable and use a ForEach loop to
cycle through each printer. We start the loop by calling Write-Host to write the printer name
to the console.

Next, we retrieve the security objects from each printer. We start by executing the
GetSecurityDescriptor on the printer object and store the security descriptor in the
variable $sd. We then extract the DACLs from the descriptor and use a ForEach loop to cycle
through them.

Lastly, in step 5, we return the assigned permissions. We start by writing out the user domain
and name from the DACL. We then use another ForEach loop to iterate through our $flags
array and perform a binary comparison between the DACL permissions and the values in the
array. If a comparison is successful, we return the human-readable permission to the console.

Managing Printers with PowerShell

264

Adding and removing printer security
Printer security allows for access to a printer to be restricted or for management of the printer
to be delegated. By restricting access, only specific users or groups can be allowed to view or
print to a specific printer. By delegating access, management of the printer can be provied
to local administrators or power users to manage the printer and print jobs.

For applying permissions to a shared printer on a print server, Server 2012 uses the
Security Definition Description Language (SDDL). The SDDL allows an administrator
to define or review the Access Control Lists (ACL) placed on an object in the form of a
string, instead of different objects.

In this recipe we will update the security for a previously created printer. In this situation
we will be restricting access to the printer to only the Domain Administrators and the users
included in a specific security group. The Domain Admins will retain Full Control of
the printer object, while the security group Accounting Users will only be allowed Print
permission to the printer.

Getting ready
In this recipe, we will be working with the print server and printer created in the Setting up
and sharing printers recipe.

How to do it...
Perform the following steps to change the security on a printer:

1. Retrieve the SID for the user/group being granted permissions:
$User = "CORP\Accounting Users"

$UserSID = (new-object security.principal.ntaccount $User).
Translate([security.principal.securityidentifier]).Value

2. Construct the Security Descriptor Definition Language (SDDL):
$SDDL = "O:BAG:DUD:PAI(A;OICI;FA;;;DA)(A;OICI;0x3D8F8;;;$UserSID)"

3. Retrieve the printer object:
$myPrinter = Get-Printer -Name "Accounting HP"

4. Set the permissions:
$myPrinter | Set-Printer -PermissionSDDL $SDDL

5. Use the script in the recipe Reporting on printer security to confirm the new
printer permissions.

Chapter 8

265

When executed, the new permissions will be displayed as shown in the following screenshot:

How it works...
We start by retrieving the Security ID, or SID, of the user or group being granted permissions.
We first create a Security.Principal.NtAccount object for our target user. We then
translate the account object into a Security.Principal.SecurityIdentifier object.
Lastly, we return the SID value and store it in the $userSID variable.

Next, we construct our SDDL. An SDDL is a Security Descriptor Definition Language that
allows us to describe our security settings in a string form. The permissions are stored inside
the braces –"(" and ")" –and in this instance we are defining two sets of permissions: the first
provides full control to the Domain Administrators, and the second provides Print
and Read permissions to our group CORP\Accounting Users.

Next we get our printer object. Finally, we use Set-Printer to apply the permissions.

This method replaces all existing permissions on the printer.
Care should be taken whenever using this script in a production
environment.

There's more...
More information about the makeup of SDDLs can be found at http://blogs.technet.
com/b/askds/archive/2008/05/07/the-security-descriptor-definition-
language-of-love-part-2.aspx.

http://blogs.technet.com/b/askds/archive/2008/05/07/the-security-descriptor-definition-language-of-love-part-2.aspx
http://blogs.technet.com/b/askds/archive/2008/05/07/the-security-descriptor-definition-language-of-love-part-2.aspx

Managing Printers with PowerShell

266

Mapping clients to printers
With Server 2012, there are two automated methods of mapping clients to printers: logon
script and Group Policy. Logon scripts are the traditional deployment method for printers and
have been used since the early days of Windows NT. The scripts can be customized based on
users, groups, AD sites, and more. Group Policies are a newer method of configuring printers
and utilize the existing OU infrastructure in your organization.

In this recipe, we will cover the various built-in methods of configuring printers via a logon
script. Each method has benefits and drawbacks, and your choice will likely depend on your
environment. We will show how to map printers using the following methods:

 f Printui.dll

 f WMI

 f WScript

Getting ready
For this recipe we will be working on a client system, mapping to a shared printer on our
print server. In this recipe we will be referencing the print server PrntSrv and the printer
Accounting HP.

How to do it...
Perform the following steps to begin mapping printers:

1. Map a printer by using Printui.dll:
$PrinterPath = "\\PrntSrv\Accounting HP"

rundll32.exe printui.dll,PrintUIEntry /q /in /n$PrinterPath

2. Set the default printer by using Printui.dll:
$PrinterPath = "\\PrntSrv\Accounting HP"

rundll32 printui.dll,PrintUIEntry /y /n$PrinterPath

3. Delete a printer by using Printui.dll:
$PrinterPath = "\\PrntSrv\Accounting HP"

rundll32.exe printui.dll,PrintUIEntry /q /dn /n$PrinterPath

4. Map a printer by using WMI:
$PrinterPath = "\\PrntSrv\Accounting HP"

([wmiclass]"Win32_Printer").AddPrinterConnection($PrinterPath)

Chapter 8

267

5. Set the default printer by using WMI:
$PrinterPath = "\\PrntSrv\Accounting HP"

$filter = "DeviceID='$($PrinterPath.Replace('\','\\'))'"

(Get-WmiObject -Class Win32_Printer -Filter $filter).
SetDefaultPrinter()

6. Remove a printer by using WMI:
$PrinterPath = "\\PrntSrv\Accounting HP"

$filter = "DeviceID='$($PrinterPath.Replace('\','\\'))'"

(Get-WmiObject -Class Win32_Printer -Filter $filter).Delete()

7. Map a printer by using WScript
$PrinterPath = "\\PrntSrv\Accounting HP"

(New-Object -ComObject WScript.Network).AddWindowsPrinterConnectio
n($PrinterPath)

8. Set the default printer by using WScript:
$PrinterPath = "\\PrntSrv\Accounting HP"

(New-Object -ComObject WScript.Network).
SetDefaultPrinter($PrinterPath)

9. Remove a printer by using WScript:

$PrinterPath = "\\PrntSrv\Accounting HP"

(New-Object -ComObject WScript.Network).RemovePrinterConnection($P
rinterPath)

How it works...
We start by using Printui.dll to map and manage network printers. Printui.dll is the
library used by Windows to manage printers and view the print server properties; with this dll
we can view the printers and drivers, add and remove printers, start the add printer wizard,
and do many other tasks. We access the dll functions by using rundll32.exe.

In step 1, we map a network printer. We start by defining the UNC path to the target printer
as \\PrntSrv\Accounting HP. Next we call rundll32.exe printui.dll with the /q,
/in, and /n switches. The /q switch tells the system to perform the task quietly and not to
show an interface. The /in switch tells the system to add a network printer. And the /n
switch identifies the UNC path of the target printer.

Next, we define our printer as the default printer. Again we call rundll32.exe printui.dll,
but this time using the /y and /n switches. The /y switch tells the system to define a printer
as the default, and the /n switch identifies the UNC path of the target printer.

Managing Printers with PowerShell

268

In step 3, we delete a network printer. We call rundll32.exe printui.dll with the /q,
/dn, and /n switches. The /q switch tells the system to perform the task quietly and not to
show an interface. The /dn switch tells the system to delete a network printer. The /n switch
identifies the UNC path of the target printer.

There are many additional options for using PrintUI.dll that can be
found by opening a Command Prompt and executing rundll32.exe
printui.dll,PrintUIEntry.

Next, starting with step 4, we perform the same tasks, but this time using WMI. We map a
new printer by first defining the UNC path to the target printer. Next, we create a wmiclass
reference to the Win32_Printer class. With the WMI reference, we can execute the
AddPrinterConnection method and pass the printer UNC path as a parameter.

In step 5, we define our printer as the default printer. We start by defining the UNC path to
the target printer. Next, we create a WMI filter based on the DeviceID of the WMI object.
The DeviceID is essentially the same as the UNC path. However, because WMI uses the \
character as an escape character, we have to replace every backslash with two backslashes.
We then call Get-WmiObject to query the Win32_Printer class using our filter to return
the printer object. Lastly, we execute the SetDefaultPrinter method to set our printer
as the default.

In step 6, we delete the printer. This process starts the same as when we set a printer as the
default printer. However, in this case, we execute the Delete method to remove the network
printer from our client.

In steps 7 through 9 we perform the same tasks again, but this time using WScript.
In step 7 we start mapping a printer by defining the UNC path of the target printer.
Next we create a WScript.Network ComObject. Using this object, we execute the
AddWindowsPrinterConnection method and pass the printer UNC path as an attribute.

In steps 8 and 9, we set our printer as the default printer and remove printers. These
methods are the same as mapping a printer except they use the SetDefaultPrinter
and RemovePrinterConnection methods respectively.

There's more...
Printers can also be mapped to users and computers by using Group Policies. Depending on
your environment this may be a preferred method for deploying printers; however, much of
the deployment process is manual and cannot currently be managed via PowerShell.

1. Create a new group policy and link it to the domain, site, or appropriate OU:
New-GPO -Name "Accounting Print"

New-GPLink -Name "Accounting Print" -Target corp

Chapter 8

269

2. Open the Print Management console.

3. Right-click on the printer and select Deploy with Group Policy… as shown in the
following screenshot:

Managing Printers with PowerShell

270

4. Click Browse and select the target GPO.

5. Select per User and/or per Machine as appropriate for the environment, and then
click on Add.

6. Click on OK.

The next time the group policy is refreshed for the user or target computer, the new printer
will be mapped.

Enabling Branch Office Direct Printing
Prior to Windows Server 2012, for clients to print, they would send all print traffic to the print
server, which then sent the data to the appropriate printer. In main office environments, or
environments with local print servers, this worked well since the print server was readily
accessible to the clients and printers via high speed connections.

However, this model caused problems in branch offices, which traditionally utilized slower
WAN links to the main office. When printing, the client would often send a print job to the
print server at the main office, which would then process and send the job to the printer
back at the branch office.

Chapter 8

271

To resolve the bandwidth issues in branch offices, many solutions could be implemented.
For example, the WAN links between the offices could be improved. Or a separate print
server could be installed in the branch office itself. Alternatively, clients could bypass
the print server and print directly to the local printer.

A new feature with Server 2012 known as Branch Office Direct Printing resolves these
problems. While still using a centralized print server for printer and driver configuration,
clients are configured to print directly to the printer. This bypasses the problems caused
by printing across the WAN link, while still maintaining management and monitoring of
the print environments.

In this recipe, we will be configuring Branch Office Direct Printing for a specific printer.
Once enabled, we will confirm that the print jobs are going directly from the client to
the printer, leaving the WAN link available for other uses.

Managing Printers with PowerShell

272

Getting ready
For this recipe we will be using a print server with one or more printers attached to it and
shared. Additionally, we will need a client to print to the printer.

How to do it...
Perform the following steps in order to enable Branch Office Direct Printing:

1. Define a printer to use for direct printing:
Set-Printer -Name "Accounting HP" -ComputerName Printer1 `

-RenderingMode BranchOffice

2. Pause printing on the printer:
(Get-WmiObject -Class Win32_Printer | `

Where-Object Name -eq "Accounting HP").Pause()

3. Send a print job to the printer:
(Get-WmiObject -Class Win32_Printer | `

Where-Object Name -eq "Accounting HP").PrintTestPage()

4. Review the print queues on the client and printer, confirm that the print job
only exists on the client:
Get-PrintJob -PrinterName "Accounting HP"

5. Resume printing:

(Get-WmiObject -Class Win32_Printer | `

Where-Object Name -eq "Accounting HP").Resume()

How it works...
We start by using Set-Printer with the –RenderingMode BranchOffice setting to
configure our target printer on the print server to use Branch Office mode. This configuration
is defined at the print server, and all clients using this printer will receive the new
configuration to bypass the print server and print directly to the printer.

In step 2, we pause printing on the printer. First, we pause the printer by querying WMI for
the printers and filtering by the nam; we then call the Pause command on the printer
object. By pausing doing this, we can review the print queues on the clients and on the
print server.

Chapter 8

273

Next, we send a print job from our client to the printer. Same as the previous step, we
start by querying WMI for our printers and filtering on the printer name. We then call the
PrintTestPage command to send a print job. The print job should appear only on the client,
confirming that the client is sending the print job directly to the printer.

In step 4, we use Get-PrintJob to view the print queues on the client and on the print
server. This command will return all jobs in the print queues. When the configuration is
operating correctly, we will see the print job on the local client, but not on the print server.
This confirms the job is going directly from the client to the printer.

Lastly, we call the Resume command on the printer object to resume the printer and allow
other print jobs to continue.

Reporting on printer usage
In many environments, it is desirable to ensure that all resources are being used as efficiently
as possible. With printers, this often comes down to knowing which printers are being used
the most or least, and which users are most active. With this information, an administrator can
best determine locations that need printer upgrades, and locations that can be downsized.

In this recipe, we will review how to monitor the print jobs through our print server.

Getting ready
For this recipe, we need a print server with one or more shared printers attached to it.
Additionally, we need one or more clients to print to the print server.

How to do it...
1. Enable logging on the print server by using the wevutil.exe utility:

wevtutil.exe sl "Microsoft-Windows-PrintService/Operational" /
enabled:true

2. Query the event log for successful print jobs:

Get-WinEvent -LogName Microsoft-Windows-PrintService/Operational |
`

Where-Object ID -eq 307

Managing Printers with PowerShell

274

How it works...
We start by enabling logging of the print service. To do this we use the command-line
tool Wevtutil.exe. This is a command-line utility that allows us to view and change
the configuration of the event logs on our server. In this instance, we are enabling the
Microsoft-Windows-PrintService/Operational log on our print server. This
log exists by default, but does not track any printing events until it is enabled.

Once logging is enabled, we can view the log for events by opening Event Viewer and
browsing to Application and Services log | Microsoft | Windows | PrintService |
Operational, as shown in the following screenshot:

Next, we use Get-WinEvent to query our event log for successful print jobs.
Successfully-printed jobs are recorded as event ID 307. This simple query will return
sufficient information to be able to create a report on how much each printer is being
used, and by which users. Additional filters can be applied to restrict the report to a
specific timeframe or other event log attributes.

There's more...
In addition to the basic report, we can also drill into the details of the event logs and report
on them individually. Each event log entry contains a Properties object, which contains
many of the event details. By querying specifically for these properties, we can return the
details we are specifically looking for as follows:

Chapter 8

275

Get-WinEvent -LogName Microsoft-Windows-PrintService/Operational |
`

Where-Object ID -eq 307 | `

Select-Object TimeCreated, `

@{Name="User";Expression={$_.Properties[2].Value}}, `

@{Name="Source";Expression={$_.Properties[3].Value}}, `

@{Name="Printer";Expression={$_.Properties[4].Value}}, `

@{Name="Pages";Expression={$_.Properties[7].Value}}

The preceding query returns a more concise report of who printed documents when,
and how large the print files were, as shown in the following screenshot:

9
Troubleshooting

Servers with
PowerShell

This chapter covers the following topics:

 f Testing if a server is responding

 f Using troubleshooting packs

 f Using Best Practices Analyzers

 f Searching event logs for specific events

 f Forwarding event logs to a central log server

Introduction
This chapter covers utilization of PowerShell troubleshooting packs, Windows Best
Practices Analyzers, and using Windows event logs. This includes basic monitoring
and the configuration of services, as well as creating a central event log server.

Testing if a server is responding
Often, when troubleshooting availability issues, one of the first steps is to test if the server is
online. Prior to PowerShell, the tool of choice for testing if a system or device was online was
Ping. For only a few systems, this worked well, however problems arose whenever attempting
to use the command on a large scale or in a automated fashion.

Troubleshooting Servers with PowerShell

278

PowerShell includes a new feature called Test-Connection that allows us to perform the
same type of test, but that is more useful for automation. This command returns a Win32_
PingStatus object that can be utilized by PowerShell.

In this recipe, we will be executing an ICMP ping against one or more target devices. PowerShell
then returns a managed object that can be interpreted by PowerShell to determine the success
or failure. PowerShell can then execute tasks based on the success or failure.

For this command to work, we must target a device that is configured to respond to ICMP
ping requests. By default, Windows firewall blocks ICMP traffic, and many network devices
can be configured to block ICMP as well. Prior to testing the connection, the target device
must be configured to allow the ping request/response. For Windows devices, this can
be configured locally or via a Group Policy.

Getting started
For this recipe, we will need two or more systems. The first system will be used to test
connectivity with other systems on the network.

How to do it...
Carry out the following steps in order to test whether a server is responding or not:

1. Ping a single host.
Test-Connection -ComputerName corpdc1

When executed, we will see the response similar to the following screenshot:

2. Ping multiple hosts.

Workflow Ping-Host ([string[]] $targets)

{

 ForEach -Parallel ($target in $targets)

 {

 If (Test-Connection -ComputerName $target -Count 2 -Quiet)

 {

Chapter 9

279

 "$target is alive"

 } Else {

 "$target is down"

 }

 }

}

Ping-Host 10.10.10.10, 10.10.10.11

When executed, we will see a response similar to the following screenshot:

How it works...
We start the first step by calling Test-Connection against a single host. By default, this
sends four sets of 32 bit ICMP echo requests (pings) to the target system. If the
target is online and the firewall allows the traffic, the system will return a response. The
target system can be referenced by its name, or by its IPv4 or IPV6 address.

In the second step, we create a workflow named Ping-Host. Workflows appear and
operate similar to functions, except they provide additional capabilities. In this case,
we are using a workflow to provide us with the ability to perform tasks in parallel.

This workflow accepts an array of names or addresses and initiates a separate task for
each of them. The workflow then executes Test-Connection, and based on the output
returns a message stating if the target is responding or not.

There's more...
In addition to pinging only one or two hosts on the network, it is possible to ping an entire
network and return a list of available targets. This can be useful if you are attempting to find
a resource, or trying to determine which addresses in your network are currently being used.

To accomplish this, we can use a loop to cycle through a range of possible addresses and call
our Ping-Host workflow.

Ping-Host -Targets (1..254 | ForEach-Object{"10.10.10.$_"})

In this case we are searching for all available nodes in the 10.10.10.X network. We start by
creating a loop for the numbers 1 through 254 and append this value to our network address.
This value is passed into our Ping-Host workflow which then creates parallel tasks for the
Test-Connection command.

Troubleshooting Servers with PowerShell

280

Using the traditional ping command, this process can take between several minutes and
several hours to ping the same network. However, because we are executing the tasks in
parallel, the results are returned within a few moments, as shown in the following screenshot:

Note that because the workflow processes in parallel, the results are
returned in a random order.

Using troubleshooting packs
Microsoft includes several in-built troubleshooting packs with Windows Server 2012. These
troubleshooting packs perform many of the troubleshooting steps necessary for common
errors. Additionally, they provide suggestions and steps for the resolution of common errors.

Depending on the system and applications, the troubleshooting packs available will vary.
A basic Windows Server 2012 system only includes two packs: Networking and PCW
(Program Compatibility Wizard). In this recipe, we will be using the Networking pack to
test connectivity and Internet access.

Getting ready
For this recipe we will be using a basic Windows Server 2012 system.

How to do it
Complete the following steps to execute the troubleshooting pack:

1. List the available packs.
Get-ChildItem C:\Windows\diagnostics\system

2. Start the troubleshooting pack.
Invoke-TroubleshootingPack `

(Get-TroubleshootingPack C:\Windows\diagnostics\system\networking)

Chapter 9

281

3. Answer the prompts as necessary.

4. Create an answer file for the troubleshooting pack.
Get-TroubleshootingPack C:\Windows\diagnostics\system\networking `

-AnswerFile c:\temp\answer.xml

5. Execute the troubleshooting pack using the answer file.

Invoke-TroubleshootingPack `

(Get-TroubleshootingPack C:\Windows\diagnostics\system\Networking)
`

-AnswerFile c:\temp\answer.xml

How it works...
In the first step, we start by viewing the available troubleshooting packs on our system.
These troubleshooting packs are collections of scripts, DLLs, and reference information
contained in a folder.

Next, once we have identified which packs are available, we can execute the desired one.
First, we use Get-TroubleshootingPack to retrieve a reference to the pack, and then
use Invoke-TroubleshootingPack to start it.

In the third step, we walk through the troubleshooting pack. In this case, we are executing
the Networking pack in order to troubleshoot Web Connectivity. In order to begin
testing, we enter the number 1 and press Enter. The script prompts for more information
before performing tests, suggesting resolutions, and performing any automated
resolutions necessary.

In addition to executing the troubleshooting packs manually, we can automate them using
an answer file. The answer file allows an administrator to automate the troubleshooting
process for potentially common problems.

Troubleshooting Servers with PowerShell

282

In step 4, to create the answer file, we use Get-TroubleshootingPack with the
 –AnswerFile switch. This switch instructs PowerShell to build the answer file at the
target location. When prompted, provide the appropriate responses to be saved in the file.

In the fifth step, to use the answer file, we reference it when starting the troubleshooting
pack. This is similar to the second step, except we use the –AnswerFile switch. The
system will proceed through the troubleshooting as instructed.

When using answer files on remote systems, the file must be
accessible to the remote system. Normally, this is performed
by copying the file to the remote system before performing the
troubleshooting tasks.

There's more...
In addition to the troubleshooting packs included with Windows Server, additional packs
can be installed by various applications.

Additionally, by using the Windows SDK, it is possible to create custom troubleshooting packs.
These can be used to troubleshoot specific applications or common errors in your environment.

Using Best Practices Analyzers
The Windows Best Practices Analyzer is a system management tool included with Server
2012. These analyzers contain the best practices defined for several server roles and
features. These best practices include multiple aspects of the system, including performance,
reliability, and security. The analyzer scans the system for these best practices and generates
a report on the system's compliance level.

In this recipe, we will be scanning a system using the FileServices Best Practices Analyzer.
Multiple analyzers are included with Windows by default, however they will only return results
if the appropriate feature is installed. The basic storage services role is included by default
with Windows Server and should run for all environments.

Getting started
For this recipe, we will be using a basic Windows Server 2012 system.

How to do it...
Complete the following steps to initiate the Best Practices Analyzers:

Chapter 9

283

1. List the available analyzers.
Get-BpaModel | Format-Table Id, Name, LastScanTime -AutoSize

When executed, the results will be shown similar to the following screenshot:

2. Initiate a scan on the local system.
Invoke-BpaModel -ModelId Microsoft/Windows/FileServices

3. Get the analyzer results.
Get-BpaResult -ModelId Microsoft/Windows/FileServices | `

Where-Object Severity -NE Information

When executed, the results should be displayed as shown in the following screenshot:

Troubleshooting Servers with PowerShell

284

4. Execute the analyzer on multiple systems and store the results centrally.
Invoke-BpaModel -ModelId Microsoft/Windows/WebServer `

-RepositoryPath \\corpdc1\BPA -ComputerName Web1, Web2

5. Review the analyzer results.

How it works...
We start off by calling Get-BpaModel to list the available analyzers on our system. Here we
are returning the ID, Name, and LastScanTime to show the last time that the analyzer was
executed. Microsoft includes several analyzers in Windows by default, and many more are
available for download online from Microsoft or third-party vendors.

In the second step, we call Invoke-BpaModel to initiate a scan on the local system. In
this situation, we are calling the Microsoft/Windows/FileServices model to scan
the system for the FileServices role. This initiates multiple checks against the system
for both file and print features. The results are saved as an XML file in C:\Windows\Logs\
BPA\Reports.

Next, we use Get-BpaResult to review the results. We can return all of the available results,
or use filtering to return only information we are interested in. In the example shown, we
are using a filter based on the Severity being something other than Information. This
filter limits the results to only a warning about a short name file creation. In addition to the
problems found, the best practice report includes information about the impact of the best
practice, and resolution steps.

Chapter 9

285

In the fourth step, we call Invoke-BpaModel again, but this time with the –ComputerName
switch. Using this switch, we can execute the analyzer on multiple remote systems
simultaneously. In this example, we are also using the –RepositoryPath switch, which
instructs the analyzer to store the results in a specific location. In this case, we are using
a network share on a server.

Finally, we can review the results by using Internet Explorer or other tools capable of
viewing XML files.

There's more...
In addition to viewing the raw XML content, it is possible to convert the results into an
HTML report. This can be done by creating the necessary XSL file, or by using a script such
as the one created by Cristian Edwards at http://blogs.technet.com/b/cedward/
archive/2011/01/11/hyper-v-bpa-html-report.aspx. This script executes the
analyzer, saves the XML output, and using an embedded XSL, saves the output as an
HTML file. The results can then be viewed in Internet Explorer.

An example report is shown as follows:

http://blogs.technet.com/b/cedward/archive/2011/01/11/hyper-v-bpa-html-report.aspx
http://blogs.technet.com/b/cedward/archive/2011/01/11/hyper-v-bpa-html-report.aspx

Troubleshooting Servers with PowerShell

286

Searching event logs for specific events
Several times after discovering a problem, the first question asked is: How often has this
occurred? If the problem is logged in the Windows event log, the answer to that question
is only a matter of looking in the logs for the specific error.

However, this can also be problematic. If the event is logged on multiple systems, or in a
busy event log, or has been occurring for a long time, searching for the error events can
be difficult. Searching for a needle in a large haystack can be next to impossible.

In this recipe, we will cover multiple methods to query the Windows event log.

Getting started
For this recipe, we will be using a basic Windows Server 2012 system.

How to do it...
Complete the following steps to query the event log:

1. Show the recent events that have been recorded in a specific log.
Get-WinEvent -LogName System -MaxEvents 10

When executed, the last ten events will be displayed, as shown in the
following screenshot:

2. Show the recent events from the Service Control Manager event provider.
Get-WinEvent -ProviderName "Service Control Manager" -MaxEvents 10

Chapter 9

287

3. Search for specific events in a log.
Get-WinEvent -FilterHashtable @{LogName='System';ID=17} -MaxEvents
10

4. Show the specific events in a log for last ten minutes.
Get-WinEvent -FilterHashtable `

@{LogName='System';ID=17;StartTime=$(Get-Date).AddMinutes((-10)}

5. Search multiple computers.
"Server1", "Server2" | `

ForEach-Object{ Get-WinEvent -ComputerName $_ -FilterHashtable `

@{LogName='System';ID=17;StartTime=$(Get-Date).AddMinutes((-10)} }

How it works...
We start by using Get-WinEvent to query the local System event log. This first example
simply returns the 10 most recent events in the event log. This can be helpful in restricting
the number of results displayed, or to display only the most recent events.

In the second step, we are using Get-WinEvent with the –ProviderName switch to query
all event logs on a system for events from a specific provider. Most applications, services, or
types of services that write to the event log tag their events with a unique provider name. In
this way, we are able to search all event logs for events from the defined provider. In this case,
we are returning events from the Service Control Manager, or events regarding the
starting and stopping of services.

In the third step, we use the –FilterHastable switch to create a complex filter. In this case,
we are querying the System event log for a specific event ID. In this case, we are returning
the last 10 events with either event ID 17, or for WindowsUpdateClient or Installation
Ready events.

Next, we query the event log for specific events that have occurred in the last 10 minutes.
This builds off the prior query and adds the starttime attribute to limit the results, based
on time. This query is particularly useful when you need to find specific events that have
occurred in the last hour, day, week, or month.

Lastly, we search for events on multiple computers. We are using the same query as defined
in the previous step and passing a collection of computer names. These names are used
in the –ComputerName switch to tell PowerShell to query the remote system.

There's more...
By using this method, it is possible to set up a rudimentary monitoring and alert system.
Instead of returning the results to the screen, PowerShell can be scripted to generate an
e-mail or initiate tasks to generate an alert or automatically remediate problems.

Troubleshooting Servers with PowerShell

288

We can create an active monitoring tool by creating a scheduled task to query a remote
system every 10 minutes for a specific event ID. If an event is returned, then the defined
issue has occurred and we can initiate a task. This task can be the sending of an alert to an
Administrator, or the initiation of a script to automatically remediate the issue.

Forwarding event logs to a central
log server

In Windows Server, it is possible to configure the forwarding of event logs to remote servers.
By forwarding events to another system, the centralized server can be configured with
different retention options, reporting, and potentially performing actions based on the
forwarded events.

This event forwarding uses a standard-based communication method using SOAP over HTTP.

There are two types of event log subscriptions: client-initiated and collector-initiated. For
client-initiated subscriptions, we use a Group Policy and configure clients to push events to
the collector. For collector-initiated, we configure the collector to pull events from each of
the clients.

In this recipe, we will be creating a client-initiated subscription. We will use a Group Policy to
distribute the configuration to our event sources. We will only be configuring one client, but
the process can be extended to include dozens or even hundreds of clients.

Getting ready
For this recipe we need a minimum of two Server 2012 systems in an Active Directory
environment. Here, we will be using Server1 as our event collector system, and Server2
will forward events to our collector as shown in the following diagram:

Chapter 9

289

How to do it...
Complete the following steps to configure event forwarding:

1. Create the collector security group.
New-ADGroup -Name "Event Collector" -GroupScope Global

Add-ADGroupMember -Identity "Event Collector" -Members Server1$

2. Create the GPO for the collector system.
New-GPO -Name "Event Collector"

New-GPLink -Name "Event Collector" `

-Target "DC=Corp,DC=Contoso,DC=Com"

Set-GPPermission -Name "Event Collector" `

-TargetName "Event Collector" -TargetType Group `

-PermissionLevel GpoApply

Set-GPPermission -Name "Event Collector" `

-TargetName "Authenticated Users" -TargetType Group `

-PermissionLevel None

3. Apply the settings to the collector GPO.
$WinRMKey="HKLM\Software\Policies\Microsoft\Windows\WinRM\Service"

Set-GPRegistryValue -Name "Event Collector" -Key $WinRMKey `

-ValueName "AllowAutoConfig" -Type DWORD -Value 1

Set-GPRegistryValue -Name "Event Collector" -Key $WinRMKey `

-ValueName "IPv4Filter" -Type STRING -Value "*"

Set-GPRegistryValue -Name "Event Collector" -Key $WinRMKey `

-ValueName "IPv6Filter" -Type STRING -Value "*"

4. Enable and configure Windows Event Collector on the collector system.
echo y | wecutil qc

5. Create the XML file for the subscription, and save the file.

Following is an example of the subscription.xml file used in this example:
<?xml version="1.0" encoding="UTF-8"?>

<Subscription xmlns="http://schemas.microsoft.com/2006/03/windows/
events/subscription">

 <SubscriptionId>Collect security</SubscriptionId>

 <SubscriptionType>SourceInitiated</SubscriptionType>

Troubleshooting Servers with PowerShell

290

 <Description></Description>

 <Enabled>true</Enabled>

 <Uri>http://schemas.microsoft.com/wbem/wsman/1/windows/
EventLog</Uri>

 <ConfigurationMode>Normal</ConfigurationMode>

 <Query>

 <![CDATA[

<QueryList><Query Id="0"><Select Path="Security">*[System[(Level=1
or Level=2 or Level=3)]]</Select></Query></QueryList>

]]>

 </Query>

 <ReadExistingEvents>false</ReadExistingEvents>

 <TransportName>HTTP</TransportName>

 <ContentFormat>RenderedText</ContentFormat>

 <Locale Language="en-US"/>

 <LogFile>ForwardedEvents</LogFile>

 <PublisherName>Microsoft-Windows-EventCollector</
PublisherName>

 <AllowedSourceNonDomainComputers>

 <AllowedIssuerCAList>

 </AllowedIssuerCAList>

 </AllowedSourceNonDomainComputers>

 <AllowedSourceDomainComputers>O:NSG:BAD:P(A;;GA;;;DC)S:</
AllowedSourceDomainComputers>

</Subscription>

A sample XML file can be viewed by executing wecutil cs /?.

You can export an existing subscription to XML by executing
wecutil gs <name> /f:XML.

6. Create a subscription.
wecutil cs subscription.xml

7. Create the source security group.
New-ADGroup -Name "Event Source" -GroupScope Global

Add-ADGroupMember -Identity "Event Source" -Members Server2$

Chapter 9

291

8. Create the GPO for the source systems.
New-GPO -Name "Event Source"

New-GPLink -Name "Event Source" -Target
"DC=Corp,DC=Contoso,DC=Com"

Set-GPPermission -Name "Event Source" -TargetName "Event Source" `

-TargetType Group -PermissionLevel GpoApply

Set-GPPermission -Name "Event Source" `

-TargetName "Authenticated Users" -TargetType Group `

-PermissionLevel None

9. Apply the settings for the source GPO.
$EventKey="HKLM\Software\Policies\Microsoft\Windows\EventLog\
EventForwarding\SubscriptionManager"

$TargetAddress="Server=http://server1.corp.contoso.com:5985/wsman/
SubscriptionManager/WEC"

Set-GPRegistryValue -Name "Event Source" -Key $EventKey `

-ValueName "1" -Type STRING -Value $TargetAddress

If using HTTPS or an alternative port, the $TargetAddress string
needs to be updated to reflect the connection type and port.

10. Open the Group Policy Management Editor and update the GPO to add Network
Service to the Event Log Readers group.

Troubleshooting Servers with PowerShell

292

11. Reboot the source computer.

12. Open Event Viewer on the collector computer and view the Forwarded Events.

How it works...
We start by creating an AD security group named Event Collector to host our collector
computer. This security group will be used to limit which computers the collector Group
Policy is applied to.

In the second step, we use New-GPO to create the Group Policy for our collector computer.
We first create the Group Policy and call New-GPLink to link it to the domain. We use
Set-GPPermission to modify the permissions of the GPO to limit access to our Event
Collector security group.

Next, we configure the GPO settings. The first setting, AlowAutoConfig, instructs Windows
to start the WinRM service and listen for events from remote sources. The IPv4Filter and
IPv6Filter values specify which systems to accept connections from. In this scenario
we have entered *, meaning any source.

Chapter 9

293

In the fourth step, we configure the Windows Event Collector. Executing wecutil qc
applies the basic configuration for the collector and configures the service to start automatically.

Next, we create the subscription.xml file. This sample XML file instructs the collector
system to request all events from the Security event log that have a Critical, Error
or Warning status.

In the sixth step, we create our subscription using our XML file. To create the subscription,
we use wecutil.exe with the cs parameter and reference our XML file. The collector
configuration is complete and we now configure the source computers.

In the seventh step, we begin configuring our source systems by creating an AD security
group to house our source computers. First, we call New-ADGroup to create a group
named Event Source. We then call Add-ADGroupMember to add the systems that
will be forwarding events. In this instance, we are only adding one system-Server2-to
the group, but multiple systems can be included at this step.

Next, we use New-GPO to create the Group Policy for our source computers. We first create the
Group Policy and use New-GPLink to link it to the domain. We then use Set-GPPermission
in order to modify the permissions to limit access to our Event Source security group.

In the ninth step, we configure the GPO settings. We start by defining $EventKey to identify
the registry key location that we will be configuring. We then define the $TargetAddress
to define the location to which the clients will forward the events. Lastly, we configure the
SubscriptionManager key with the target server address.

In the tenth step, we open the Group Policy Management Editor screen to update our Event
Source GPO. This step cannot be performed by using PowerShell and must be completed using
the editor. Edit the Event Source GPO and browse to Computer Configuration | Policies |
Windows Settings | Security Settings | Restricted Groups. We add the Network Service
role to the local Event Log Readers group. This permission is necessary for the source
system to send event log messages.

Finally, for the security permissions to apply, the source computers need to be rebooted.
Once rebooted, the event logs should start to be forwarded to the target system.

Troubleshooting Servers with PowerShell

294

There's more...
In addition to the simple forwarding shown here, it is also possible to configure multi-tier
forwarding. For example, if your environment contains multiple sites, it is possible to configure
a collector computer at each site, and then forward events from the remote sites' collectors
to a central collector in your datacenter.

In this configuration, each level of forwarding can have different retention and forwarding
rules applied. For example, it may be desirable to retain all application logs at the remote
sites, but only critical security events at the central site.

10
Managing Performance

with PowerShell

This chapter covers the following recipes:

 f Reading performance counters

 f Configuring Data Collector Sets

 f Reporting on performance data

 f Generating graphs

 f Creating server performance reports

Introduction
This chapter shows how to use PowerShell to track and report on historical performance
and identify bottlenecks. This chapter will also show how to integrate PowerShell objects
with Excel to create usable performance reports and graphs.

Reading performance counters
Often the best method of identifying how a system is performing is by viewing the
performance counters. Microsoft has included PerfMon in Server 2012 for collecting and
viewing performance information graphically; however this has been problematic to automate
across multiple systems. Several system management tools have been created to enable
enterprise-wide monitoring, however they are normally very expensive, difficult to maintain,
and are designed to do more than most people need.

In this recipe, we will review various methods of gathering performance data using PowerShell.

Managing Performance with PowerShell

296

Getting ready
For this recipe, we will be using a basic Windows Server 2012 system. Additionally, we will
export the performance statistics for viewing in Microsoft Excel.

How to do it...
Carry out the following steps to read the performance data using PowerShell:

1. Read the basic performance counters.
Get-Counter

When executed, performance metrics will be displayed, as shown in the
following screenshot:

Chapter 10

297

2. Retrieve the multiple performance counter samples.
Get-Counter -Counter "\Processor(_Total)\% Processor Time" `

-MaxSamples 4 -SampleInterval 10

When completed, the results will be displayed, as shown in the following screenshot:

3. Read the counters on multiple computers.
$myNodes = "server1","server2"

$myCounter = $myNodes | ForEach-Object {

 "\\$_\Memory\% Committed Bytes In Use"

 "\\$_\PhysicalDisk(_Total)\% Disk Time"

}

Get-Counter -Counter $myCounter

4. Save the counter results to a file.

$results = Get-Counter -Counter $myCounter -MaxSamples 4 `

-SampleInterval 10

$results | Export-Counter -Path "c:\temp\perfcounter.csv" `

-FileFormat CSV

Managing Performance with PowerShell

298

How it works...
We start by executing the in-built PowerShell Cmdlet Get-Counter. This command is
used to query performance counters and return the results. Without any additional switches,
the command returns a point-in-time snapshot of the environment, including network, CPU,
memory, and disk counters.

In the second step, we use Get-Counter to retrieve multiple counter samples over a period
of time. Here, we are collecting the \Processor(_Total)\% Processor Time of our
system every 10 seconds. We specify the –SampleInterval switch to tell PowerShell to
collect data every 10 seconds, and the –MaxSamples switch tells PowerShell how many
intervals to collect.

Next, we collect multiple performance counters from multiple systems simultaneously. We
start by creating an array object named $myNodes that contains the names of the systems to
query. This array is then piped into a ForEach-Object loop that adds multiple performance
counters to the $myCounter array. Finally, we call Get-Counter with our array. The system
will then return the values for each counter on each system.

To access performance counters remotely, the Remote Event Log
Management firewall exception must be enabled on the target system.
This can be applied locally to the server, or via a Group Policy.

In the fourth step, we save our results so that they can be viewed in Excel, PowerShell, or
other tools. We use the same $myCounter object as used in the previous step, except this
time we call Get-Counter with the –MaxSamples and –SampleInterval switches to
retrieve multiple samples. The results are saved to a variable named $results. $results
is then piped to Export-Counter with the –Path and –FileFormat switches, which saves
the results into a comma separated value (CSV) file. The CSV file can then be opened in Excel
or used by PowerShell as the source for other processes.

Chapter 10

299

Configuring Data Collector Sets
When reviewing the performance of a server, I normally include a large set of performance
counters. I configure the counters to collect multiple times every minute for an entire day.
When finished, I have a complete picture of the performance of every aspect of the system
for the day.

Windows includes a feature known as Data Collector Sets that allows us to define this
configuration. Once defined, we can execute it locally or remotely, and it will run automatically
for the predefined time frame.

In this recipe, we will be creating a basic Data Collector Set that will collect performance data
from a system every 10 seconds for 24 hours. This data will be saved to the local filesystem
in a format that can be accessed by PowerShell, Excel, and other reporting tools. We will then
export this configuration and use it to configure remote systems.

Getting ready
For this recipe, we will need two Server 2012 systems. Additionally, we will need a manually
created Data Collector Set to act as a template for deploying to other systems.

Complete the following steps to create the Data Collector Set manually:

1. Open Performance Monitor and right-click on User Defined under Data Collector
Sets, and then select New | Data Collector Set.

Managing Performance with PowerShell

300

2. In the Create new Data Collector Set wizard, enter a name, select Create manually
(Advanced), and then click on Next.

3. Select Performance counter, and then click on Next.

Chapter 10

301

4. Add the performance counters that you wish to collect and specify the Sample
interval, and then click on Finish.

5. In Performance Monitor edit the properties of the new collector and select the
Stop Condition tab.

 � Specify a Duration of 24 and Units as Hours, and then click on OK.

Managing Performance with PowerShell

302

 � Edit the properties of DataCollector01 and change Log format to Comma
Separated. Click on OK.

We start by creating a template Data Collector Set. We are using the graphical interface
to quickly and easily define the settings, and will later export them to an XML file. In
addition to the few counters shown here, we can add dozens, or even hundreds, more.

How to do it...
Complete the following steps to use PowerShell to manage Data Collector Sets:

1. On the primary system, export the data collector as XML.
$dataCollectorSet = New-Object -ComObject Pla.DataCollectorSet

$dataCollectorSet.Query("Basic Counters",$null)

$dataCollectorSet.Xml | Out-File C:\PerfLogs\BasicCounters.xml

Chapter 10

303

2. Import the data collector on a remote system.
Copy-Item c:\PerfLogs\BasicCounters.xml '\\server1\c$\PerfLogs'

Enter-PSSession server1

$dataCollectorSet = New-Object -ComObject Pla.DataCollectorSet

$xmlCounters = Get-Content "c:\perflogs\BasicCounters.xml"

$dataCollectorSet.SetXml($xmlCounters)

$dataCollectorSet.Commit("Basic Counters",$null,1)

$dataCollectorSet.Start($true)

3. After you have finished collecting data, delete the data collector.

$dataCollectorSet = New-Object -ComObject Pla.DataCollectorSet

$dataCollectorSet.Query("Basic Counters",$null)

$dataCollectorSet.Stop($true)

Sleep 2

$dataCollectorSet.Delete()

How it works...
In the first step, we export the data collector as an XML file. We start by creating a COM
object reference to the Performance Logs and Alerts (PLA.DataCollectorSet) object
to access our data collector. We query the DataCollectorSet object for our Data
Collector Set by name, and then export it to an XML file named BasicCounters.xml.

In the second step, now that we have the Data Collector Set in XML format, we can execute it on
remote computers. First, we use Copy-Item to copy the XML file to the remote computer, and
then use Enter-PSSession to connect to the system. We create a PLA.DataCollectorSet
COM object to allow us to access the local data collectors. We use the SetXml command to
import the XML file on the system and call Commit to save the collector on the remote system.
Lastly, we call Start in order to start the Data Collector on the remote computer. Based on our
predefined settings, the collector will gather information for 24 hours and then automatically
stop. When finished, the results will be saved as a CSV file on the remote system.

When we have finished collecting data, in the third step we delete the data collector. We
create our PLA.DataCollectorSet COM object and query for the data collector by name.
We call Stop to stop the collector in case it is currently running and then call Sleep for 2
seconds to allow any data collector processes to close. Finally, we Delete the data collector
from the computer.

Managing Performance with PowerShell

304

It isn't necessary to delete the Data Collector Sets after being used
to collect performance information. If you have a set that will be used
frequently, it can be deployed once and stay on the remote system for
as long as it is needed.

There's more...
In addition to the few data points defined in this example, we can add dozens or hundreds of
additional data points. One example of a large Data Collector Set can be found at http://
flippingbits.typepad.com/blog/perfcollect.html. This tool automates the
collection of performance data for nearly 600 data points. Although it was designed specifically
for use with systems connected to EMC equipment, it is a great example of a data collector that
contains most of the data points needed to troubleshoot performance on most systems.

Reporting on performance data
Once performance data has been collected, the next challenge is to organize the information
into a usable format. There are basic statistics that can be gathered easily through
PowerShell—minimum, maximum, and average, however, these only tell a part of the story.

In addition to these basic statistics, it is often useful to identify the 95th percentile. The
95th percentile identifies how many resources are consumed, or how much performance
is needed, 95 percent of the time. The remaining 5 percent can often be regarded as a
statistical anomaly, and excluded from most performance or sizing practices.

Getting ready
In this recipe, we will be using the performance data collected in the previous recipe,
Configuring Data Collector Sets, to generate a performance report. This report will
include only one aspect of the computer utilization, but it can be easily expanded to
include additional counters.

How to do it...
Complete the following steps to analyze the performance data:

1. Import the performance counters.
$counters = Import-Csv "C:\PerfLogs\Admin\Basic Counters\
CORPDC1_20121205-000002\DataCollector01.csv"

$counters[0] = $counters[1]

http://flippingbits.typepad.com/blog/perfcollect.html
http://flippingbits.typepad.com/blog/perfcollect.html

Chapter 10

305

2. Report on the basic CPU stats.
$stats = $counters | Measure-Object `

"*Processor(_Total)\% Processor Time" -Average -Minimum -Maximum

3. Report on the 95th percent of the CPU stats:
$row = [int]($counters.Count * .95)

$cpu = ([double[]](`

$counters."\\CORPDC1\Processor(_Total)\% Processor Time") | `

Sort-Object)

$cpu95 = $CPU[$row]

4. Combine the results into a single report:

Add-Member -InputObject $stats -Name 95thPerc `

-MemberType NoteProperty -Value $cpu95

$stats

When executed, the results will be displayed, as shown in the following screenshot:

How it works...
We start by accessing the performance data saved from the prior recipe. We use Import-
CSV to import the data and save it into a variable named $counters. We then set
$counters[0] equal to $counters[1] in order to overwrite the first row of information
with the contents of the second because PerfMon often doesn't populate this row entirely.
Otherwise, this missing data can cause problems with our scripts.

In the second step, we use Measure-Object to collect basic information on our
Processor(_Total) performance. Here we are using the –Average, -Minimum,
and –Maximum switches. We then save the results into the variable $stats.

Managing Performance with PowerShell

306

In the third step, we identify the 95th percentile of our CPU utilization. To calculate this value,
we call $counters.Count to count the total number of rows in our dataset and multiply this
by .95. This returns the row number that contains the 95th percentile value. Next, we sort our
counters based on the CPU utilization and place them in an array named $CPU. Lastly, we call
$CPU[$row] to return the value in the target row.

Lastly, we use Add-Member to add our 95th percentile value to the $stats object. Once
added, we return the results.

As we can see from the results, the system averaged only 7 percent utilization during our
polling period, but occasionally spiked to 100 percent. However, the 95th percentile tells us
that for most of the sample time, the system rarely utilized more than 68 percent of the CPU.

In other words, in a 24 hour period, nearly 23 hours used less than 68 percent of the CPU
and the system only spiked higher than 68 percent for a little more than an hour. For normal
operation, this suggests the system has more than sufficient CPU capacity to satisfy most needs.

There's more...
There are many methods available for calculating the utilization percentile for performance
numbers. For more details on the various methods, you can review the Wikipedia article
at http://en.wikipedia.org/wiki/Percentile.

Generating graphs
There is an old saying that a picture is worth a thousand words, and when reporting on
performance numbers, pictures can be significantly more useful than raw numbers. With
a performance graph, you can quickly show the utilization of a system, any performance
spikes, and when they occur during the day.

To generate our graphs we will be using the System.Windows.Forms.
DataVisualization.Charting.Chart class that is included in .NET Framework 4
and greater on Windows 7 and greater.

Getting ready
In this recipe, we will be using the performance data previously collected in the Configuring
Data Collector Sets recipe to generate a graph showing the CPU utilization. The graph will
be saved as a PNG file that can be printed, attached to a report, or e-mailed along with the
performance report.

http://en.wikipedia.org/wiki/Percentile
http://en.wikipedia.org/wiki/Percentile

Chapter 10

307

How to do it...
Carry out the following steps to generate a graph:

1. Create a chart object.
$myChart = New-Object `

System.Windows.Forms.DataVisualization.Charting.Chart

$myChart.Width = 600

$myChart.Height = 400

2. Define the chart.
[void]$myChart.Titles.Add("CPU Utilization")

$chartarea = New-Object `

System.Windows.Forms.DataVisualization.Charting.ChartArea

$chartarea.Name = "CPU"

$chartarea.AxisY.Title = "% CPU"

$myChart.ChartAreas.Add($chartarea)

3. Import the CSV data.
$counters = Import-Csv "C:\PerfLogs\Admin\Basic Counters\
CORPDC1_20121205-000002\DataCollector01.csv"

$counters[0]=$counters[1]

4. Identify the date/time column.
$name = ($counters[0] | Get-Member | `

Where-Object MemberType -eq "NoteProperty")[0].Name

5. Add the data points to the chart.
[void]$myChart.Series.Add("CPUPerc")

$myChart.Series["CPUPerc"].ChartType = "Line"

$counters | ForEach-Object{

[void]$myChart.Series["CPUPerc"].Points.AddXY($_.$name, `

$_."\\corpdc1\Processor(_Total)\% Processor Time")

}

6. Save the chart image.

$myChart.SaveImage("c:\temp\CPUUtil.png","png")

Managing Performance with PowerShell

308

How it works...
In the first step, we start by creating our chart object. The chart object is a container that
holds all of the applicable chart resources. Because PowerShell is based on the .NET
framework, and the charting objects are built into Windows Server 2012, we can easily create
a chart object. Once we have created the chart, we configure the desired Width and Height.

Next, we create the chart area. The chart area defines the chart and is used to contain the
data series. First, we add a Title to the chart and then create the ChartArea object. On the
ChartArea, we define the Name and axis Title, and add it to the chart object $myChart.

In the third step, we load the performance data that we previously collected. Here, we call
Import-CSV to import the CSV export of the performance data. We overwrite the first row
of results because they are normally invalid and can cause problems with scripts.

Next, we identify the name of the date/time column in our CSV file. This is needed because
PerfMon names the first column based on the time zone of the client, for example, on my test
client the column is named (PDH-CSV 4.0) (Pacific Standard Time)(480). We need
to identify the column name so that we can later access the values. To find the name of the first
column, we pipe the first row through Get-Member and filter on the type of NoteProperty.
We place the name of the first result into a variable so that we can reference it later.

In the fifth step, we add our data to the chart. We start by calling $myChart.Series.Add to
create a data series, and set the ChartType to Line. We then pass our dataset through a
ForEach-Object loop to enumerate our dataset, and add the values for the % Processor
Time counter to the data series.

Lastly, we call SaveImage to save the chart object as a PNG file. The file can then be viewed,
or attached to an e-mail or document to create a report.

Chapter 10

309

There's more...
In addition to the single data series shown here, it is possible to add multiple data series
to a single graph. For example, to report on the utilization of multiple hard disk drives in
a system, each disk can be added to the same graph, each with a different color line, so
that their utilization can be viewed as a set.

The .NET charting object support many advanced features. For example, you can add a static
line reporting the 95th percentile or other threshold. You can also use multiple axes on the
same report, add legends, combine line and bar charts, create pie charts, and so on.

A good example of using PowerShell to create more advanced graphs can be found at http://
blogs.technet.com/b/richard_macdonald/archive/2009/04/28/3231887.
aspx. This blog uses .NET 3.5 for its examples, but shows how to perform many of the different
charting configurations possible by using PowerShell.

Creating a server performance report
In Windows Server 2012, several performance reports are included with Performance Monitor.
These reports are included as in-built Data Collector Sets. However, instead of just collecting
statistics, they also generate reports showing the system configuration and performance.

Getting ready
Depending on the features installed on your server, the in-built Data Collector Sets will vary.
To view the available sets, open Performance Monitor and browse to Data Collector Sets |
System. When generated, the reports will appear in the Reports node, as shown in the
following screenshot:

http://blogs.technet.com/b/richard_macdonald/archive/2009/04/28/3231887.aspx
http://blogs.technet.com/b/richard_macdonald/archive/2009/04/28/3231887.aspx

Managing Performance with PowerShell

310

How to do it...
In this recipe, we will be executing and using the System Diagnostics report. Complete
the following steps to generate a report and send it via e-mail:

1. Start the data collector on the local system.
$perfReport="System\System Diagnostics"

$dsSet = New-Object -ComObject Pla.DataCollectorSet

$dsSet.Query($perfReport,$null)

$dsSet.Start($true)

2. Wait for the data collector to finish.
Sleep $dsSet.Duration

3. E-mail the report.
$dsSet.Query($perfReport,$null)

$myReport = $dsSet.LatestOutputLocation + "\report.html"

Send-MailMessage -SmtpServer mail.corp.contoso.com `

-From reports@contoso.com -To serveradmin@contoso.com `

-Subject "Diagnostic performance report" -Attachments $myReport

How it works...
In the first step, we start by initiating the target Data Collector Set. First, we create a PLA.
DataCollectorSet COM object and then query the Data Collector Set by name. In this
example, we are executing the System\System Diagnostics data collector, but we could
have executed any other available set. We then Start the Data Collector Set.

In the second step, we sleep until the data collector is finished. This uses the value in
$dsSet.Duration as the maximum duration for which the collector can run, which may
be more than what is necessary in all circumstances.

Chapter 10

311

Lastly, we identify the LatestOutputLocation to find the report on the system, and then
send it via e-mail. In this example, we are attaching the report to the e-mail as a file; however,
we could also include the report in the contents of the e-mail. When finished, we can view the
report in the Internet Explorer or any other web browser.

11
Inventorying Servers

with PowerShell

This chapter covers the following topics:

 f Inventorying hardware with PowerShell

 f Inventorying the installed software

 f Inventorying system configuration

 f Reporting on system security

 f Creating a change report

 f Exporting a configuration report to Word

Introduction
This chapter explains how to inventory the hardware and software configurations of Windows
8 Servers and create a detailed inventory and configuration report. Additionally, this chapter
will cover methods to track configuration changes over time, export the configuration report
via Word. This chapter should cover everything necessary to create a centralized hardware
and software inventory of all servers in the enterprise.

Inventorying hardware with PowerShell
Often times, a system administrator needs to identify what hardware is installed in their
environment. This could be for an asset tracking project, finding available resources, or even
identifying older equipment that needs to be retired. Most hardware information on a system
is stored in WMI and can be accessed via in-built PowerShell functions or via WMI queries.

Inventorying Servers with PowerShell

314

In this recipe, we will review the various methods for gathering inventory information from our
local system. In addition to collecting from the local system, these methods can be expanded
to include remote systems.

How to do it...
We can review the various methods for gathering inventory information as follows:

1. Gather disk information from the local system.
$TargetSystem="."

$myCim = New-CimSession -ComputerName $TargetSystem

Get-Disk -CimSession $myCim

When executed, the results will be displayed similar to the following screenshot:

2. Review the contents of the Get-Disk function.
Get-Content Function:Get-Disk

When executed, the contents of the function will be displayed as shown in the
following screenshot:

3. Retrieve results using WMI.

Get-WmiObject -Class MSFT_DISK `

-Namespace ROOT\Microsoft\Windows\Storage

Chapter 11

315

When executed, the results will be displayed similar to the following screenshot:

How it works...
We start by gathering the disk information from the local system. First, we call New-
CimSession to create a CIM connection to the target system, in this case we are connecting
to the local system, so we can use "." instead of a system name. Next, we call the in-built
PowerShell function Get-Disk to return the disk information. By default, PowerShell only
returns a subset of information; more can be returned by piping the output through a
Select-Object statement and choosing which columns to return.

In the second step, we review the contents of the Get-Disk function to learn how it works.
Because this command is a function, we can use Get-Content to view the contents of the
function. This will return the full content of the script, but in this case we are only interested
in the OutputType. In this line, we see that the function retrieves its content from WMI at
the ROOT\Microsoft\Windows\Storage\MSFT_Disk namespace and class.

Finally, we query WMI directly using the namespace and class previously identified. To
perform this we use Get-WmiObject to search WMI directly. We use the –Namespace
switch to connect to the ROOT\Microsoft\Windows\Storage namespace. We use the
 –Class switch to return all objects in the MSFT_Disk class. This information is the same
as previously returned, confirming the location is the same.

There's more...
In addition to the disk values shown here, there are several additional PowerShell commands
and WMI locations to report hardware inventory. Only a few of these inventory types have been
converted to in-built PowerShell functions, the remainder needs to be queried directly against
WMI. Examples of additional counters are as follows:

 f Logical disk
Get-Disk -CimSession $myCim

 f Physical disk
Get-PhysicalDisk -CimSession $myCim

 f Network adapters
Get-NetAdapter -CimSession $myCim

Inventorying Servers with PowerShell

316

 f System enclosure
Get-WmiObject -ComputerName $TargetSystem `

-Class Win32_SystemEnclosure

 f Computer system
Get-WmiObject -ComputerName $TargetSystem `

-Class Win32_ComputerSystemProduct

 f Processor
Get-WmiObject -ComputerName $TargetSystem -Class Win32_Processor

 f Physical Memory
Get-WmiObject -ComputerName $TargetSystem -Class Win32_
PhysicalMemory

 f CD-Rom
Get-WmiObject -ComputerName $TargetSystem -Class Win32_CDromDrive

 f Sound card
Get-WmiObject -ComputerName $TargetSystem -Class Win32_SoundDevice

 f Video card
Get-WmiObject -ComputerName $TargetSystem `

-Class Win32_VideoController

 f BIOS

Get-WmiObject -ComputerName $TargetSystem -Class Win32_BIOS

Inventorying the installed software
In addition to inventorying a system's hardware, it is often necessary to inventory the
installed software. There are two primary methods to query the installed software: using the
Microsoft Installer, and the Uninstall registry key. These two locations generally
return the same information, however as we will see there are different uses for each.

How to do it...
Complete the following to review the installed software:

1. Get installed features.
Get-WindowsFeature | Where-Object Install`State -EQ "Installed"

Chapter 11

317

2. Return software inventory via MSI.
Get-WmiObject -Class Win32_Product

3. Open event viewer and review the system event logs. Note the multiple Event ID
1035 messages as shown in the following screenshot:

4. Return inventory via a registry.
$HKLM = 2147483650

(([wmiclass]"root\default:stdregprov").EnumKey($HKLM, `

"Software\Microsoft\Windows\CurrentVersion\Uninstall")).sNames

5. Return installed patches.

Get-WmiObject -Class Win32_QuickFixEngineering

How it works...
We start by using Get-WindowsFeature to list the features installed in our Windows 2012
Server. This command returns all of the installed features and roles on the current server. If you
are unfamiliar with a system, this is a great method to know what Windows services include.

Inventorying Servers with PowerShell

318

In the second step, we use WMI to query the Win32_Product class. This class interacts
with the MSI packages on your system and returns a list of all packages currently installed.
However, this command should be used with caution as it also causes the MSI packages
to be reconfigured, or reset to their default configurations. If we open Event Viewer
and review the Application, log on your system after executing this task, we will notice
a large number of Event ID 1035.

In the fourth step, we use WMI to query the registry and return a list of applications. We
start by defining the variable $HKLM and assigning the value 2147483650 which is used by
WMI to reference the HKey_Local_Machine registry hive. We then query the results from
the Software\Microsoft\Windows\CurrentVersion\Uninstall key. This returns
information used by the Programs control panel icon. Often times this list will be different
from the previous list because not all applications are installed as MSI packages, and
because not all MSI packages appear in the Programs list.

Lastly, we return the installed hotfixes. Most Microsoft hotfixes add an entry to the Win32_
QuickFixEngineering WMI namespace when they are installed. This provides a quick
and simple method to identify which updates are installed on a system.

Inventory system configuration
When cataloging your environment, it is also important to inventory the system configuration.
To fully document your environment, information such as the network configuration, local
users, and service state is necessary. This information is useful when recreating your
environment in a DR scenario, or simply for a Dev/Test environment.

In this recipe, we will be returning the configuration for a basic Windows Server.

Getting ready
For this recipe we will be using a Windows Server 2012 system.

How to do it...
Perform the following to gather the system information:

1. Retrieve the network configuration
$TargetSystem="."

$myCim = New-CimSession -ComputerName $TargetSystem

Get-NetIPAddress -CimSession $myCim

Get-NetRoute -CimSession $myCim

Chapter 11

319

When executed, the network information will be displayed similar to the following

2. List the event logs.
Get-EventLog -List -ComputerName $TargetSystem

3. Display the local users and groups.
Get-WmiObject -ComputerName $TargetSystem `

-Query "Select * from Win32_Group where Domain='$TargetSystem'"

Get-WmiObject -ComputerName $TargetSystemt `

-Query "Select * from Win32_UserAccount where
Domain='$TargetSystem'"

4. List the services.
Get-Service

Get-WmiObject -Class Win32_Service | `

Select-Object Name, Caption, StartMode, State

5. List the currently running processes.
Get-Process

6. Show the system's shares and printers.
Get-SmbShare

Get-Printer

7. Display the startup information.
Get-WmiObject -ComputerName $TargetSystem -Class Win32_
StartupCommand

Inventorying Servers with PowerShell

320

8. Show the system time zone.
Get-WmiObject -ComputerName $TargetSystem -Class Win32_TimeZone

9. Display information about the registry.

Get-WmiObject -ComputerName $TargetSystem -Class Win32_Registry

How it works...
We start by retrieving the network configuration of the system. The first Get-NetIPAddress
command returns the current IPv4 and IPv6 addresses assigned to the network adapters.
The second Get-NetRoute command returns the current routing table, which helps define
the network configuration around the system.

In the second step, we use Get-EventLog to retrieve information about the event logs.
The –List switch returns information about the event logs, which logs exist on the system,
the retention settings, and current sizes.

Next, we retrieve the local users and groups. To return this information we query WMI for the
Win32_UserAccount and Win32 _Group classes. We add a filter to our query to only return
users and groups that belong to the local system. Without the filter, the query will return users
and groups in the entire domain instead of the local system.

In the fourth step, we retrieve the status of the installed services. To return service
information we can use the in-built Cmdlet Get-Service or query the Win32_Service
WMI class. The WMI class provides more information for reporting, including the startup
setting for the service; however, this method comes at the price of performance.

Next, in the fifth step, we return the currently running processes. On a workstation or a
Dev/Test system, the process information will be very dynamic and possibly not very useful.
However, on a stable system where the running processes don't change often, such as a
mail server, this can help confirm changes to the running configuration of the system.

In the sixth step, we use Get-SmbShare and Get-Printer to return the shares and
printers on the system. This information provides a quick snapshot of the file/print
configuration that can be used for change tracking as well as security auditing.

In the seventh step, we use Get-WmiObject to return the contents of the Win32_
StartupCommand WMI class. The startup commands are additional executables,
in addition to services, that are executed at systems startup and when users log in.

Lastly, the Win32_TimeZone class returns the currently configured time zone for the
system. The time zone can be useful when using scheduled tasks to execute commands
at a certain time of day. And the Win32_Registry class returns the current and
maximum sizes of the system.

Chapter 11

321

There's more...
In addition to the basic configuration information shown here, additional applications can
be included as well. Built-in features such as IIS and Active Directory can also be inventoried.
Additional Microsoft and third-party applications such as Exchange or reporting applications
can also be included.

Reporting on system security
In newer versions of Windows, Microsoft has added the Action Center. This area reports on key
security and maintenance aspects of your system and quickly alerts Administrators to errors.

In Server 2012, there are five categories tracked in the Action Center:

 f Network Access Protection: This controls network access in secure environments

 � Service name napagent

 f Smart Screen: This controls how unknown applications are handled on the system

 � It is stored in HKLM:\SOFTWARE\Microsoft\Windows\
CurrentVersion\Explorer

 f User Account Control: This controls how elevated permissions are handled on the
system

 � It is stored in HKLM:\Software\Microsoft\Windows\
CurrentVersion\Policies\System

 f Windows Activation: It activates Windows with Microsoft

 � It is Stored in the WMI SoftwareLicensingProduct key

 f Windows Update: It provides patching and updates

 � It is stored in HKLM:\SOFTWARE\Microsoft\Windows\
CurrentVersion\WindowsUpdate\Auto Update

In this recipe, we will be reporting on the security status of the system as viewed by the
Action Center.

Getting ready
For this recipe we will be using a Windows Server 2012 system.

Inventorying Servers with PowerShell

322

How to do it...
1. Retrieve the user's account control settings.

$secSettings = Get-ItemProperty -Path `

HKLM:\Software\Microsoft\Windows\CurrentVersion\Policies\System

2. Report on the UAC values.
IF($secSettings.PromptOnSecureDesktop -eq 1)

{

 IF($secSettings.ConsentPromptBehaviorAdmin -eq 2)

 {

 Write-Host "4: Always notify me"

 } Else {

 Write-Host "3: Notify me only when apps try to make
changes to my computer (default)"

 }

} Else {

 IF($secSettings.ConsentPromptBehaviorAdmin -eq 5)

 {

 Write-Host "2: Notify me only when apps try to make
changes to my computer (do not dim my desktop)"

 } Else {

 Write-Host "1: Never notify me"

 }

}

When executed, the results will be displayed similar to the following screenshot:

Chapter 11

323

3. Retrieve the smart screen settings.
$ssSettings = Get-ItemProperty -Path `

HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer

4. Return the smart screen value.
$ssSettings.SmartScreenEnabled

When executed, the results will be returned as shown in the following screenshot:

5. Retrieve the Network Access Protection settings.
Get-Service napagent

6. Retrieve the Windows Update settings.
$auValue = 0

$auLocSettings = Get-ItemProperty `

-Path "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\
WindowsUpdate\Auto Update"

$auGpoSettings = Get-ItemProperty `

-Path "HKLM:\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU"

IF($auGpoSettings) {

 $auValue = $auGpoSettings.AUOptions

} Else {

 $auValue = $auLocSettings.AUOptions

}

7. Return the Windows update values.
IF($auValue -eq 4) {

 Write-Host "4: Install updates automatically (recommended)"

}

IF($auValue -eq 3) {

 Write-Host "3: Download updates but let me choose whether to
install them"

}

Inventorying Servers with PowerShell

324

IF($auValue -eq 2) {

 Write-Host "2: Check for updates but let me choose whether to
download and install them"

}

IF($auValue -eq 1) {

 Write-Host "1: Never check for updates (not recommended)"

}

When completed, the results will be displayed similar to the following screenshot:

8. Retrieve the Windows activation status.

$licResult = Get-WmiObject `

-Query "Select * FROM SoftwareLicensingProduct WHERE LicenseStatus
= 1"

$licResult.Name

When executed, the licensed products will be returned as shown in the
following screenshot:

Chapter 11

325

How it works...
We start by retrieving the values for User Account Control. These values are stored in two
registry keys named PromptOnSecureDesktop and ConsentPromptBehaviorAdmin
under the HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\
System key. These two keys work together to define the UAC slider visible in the control panel.
The results are returned with the appropriate value and description.

We can review these settings by opening the Action Center on a Server 2012 system. In the
Action Center, under Security and User Account Control, click on Change settings to view
the current settings as shown in the following screenshot:

In the third and fourth steps, we retrieve the SmartScreen settings. This setting is stored in
the registry value SmartScreenEnabled in the HKLM\Software\Microsoft\Windows\
CurrentVersion\Explorer key. This value will be one of three values: Off, Prompt,
or RequireAdmin.

Inventorying Servers with PowerShell

326

We can also view these settings by opening the Action Center. In the Action Center, under
Security and Windows SmartScreen, click on Change settings to see the screen shown
as follows:

In the fifth step, we retrieve our Network Access Protection settings. The Action Center
only reports on the state of the NAP client agent, so our script uses Get-Service to
query the state of the napagent service.

Next, we retrieve our Windows update settings. These settings can be stored in two different
registry locations depending on if the settings are configured locally (HKLM:\SOFTWARE\
Microsoft\Windows\CurrentVersion\WindowsUpdate\Auto Update) or via a Group
Policy (HKLM:\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU). It is
possible for both these locations to contain values, in which case the Group Policy setting
takes precedence. The registry value AUOptions returns a number 1 to 4 detailing the
current setting. The value is then returned to the PowerShell console.

Lastly, we retrieve the status of Windows activation. The Windows activation status is
stored in WMI under the SoftwareLicensingProduct key. Here we query the key
for any product with a LicenseStatus of 1 and it returns the name.

Chapter 11

327

Creating a change report
With computers, the only thing that is consistent is change. A change can be as simple as
installing a hotfix or as major as upgrading the operating system. Regardless of the cause
or severity, tracking the changes made to your environment is often the key to resolving
problems and retaining a secure and stable environment.

In this example, we will be reporting on changes to the network configuration of our system.
This sample process can be expanded to include the installed hardware and software,
system configuration, and security settings as well.

Getting ready
For this recipe, we will be using a Windows Server 2012 system.

How to do it...
Perform the following to create a change report:

1. Create a custom PSObject to store our configuration.
$myComp=@{}

2. Collect the network information, and add it to the PSObject.
$ipAddresses = Get-NetIPAddress | `

Select-Object InterfaceIndex, InterfaceAlias, IPAddress,
PrefixLength

$myComp.IPaddr = $ipAddresses

3. Save the PSObject to a file.
Export-Clixml -InputObject $myComp -Path "c:\temp\myComp.clixml"

4. Change the network settings to simulate a configuration change.

5. Create a new PSObject to store our new configuration.
$myComp=@{}

6. Collect the updated network information, and add to our PSObject.
$myComp.IPaddr = Get-NetIPAddress | `

Select-Object InterfaceIndex, InterfaceAlias, IPAddress,
PrefixLength

7. Load the original PSObject.
$oldComp = Import-Clixml "c:\temp\myComp.clixml"

Inventorying Servers with PowerShell

328

8. Export and import the new PSObject to ensure the objects are of the same type.
Export-Clixml -InputObject $myComp -Path "c:\temp\myComp.clixml"

$myComp = Import-Clixml "c:\temp\myComp.clixml"

9. Compare objects.

$keys = $myComp.GetEnumerator()

$keys | ForEach-Object {

Write-Host $_.Name

Compare-Object $oldComp.($_.Name) $myComp.($_.Name)}

How it works...
We start by creating an empty custom PowerShell object. There are multiple different
methods to create custom PowerShell objects, however most methods require the object
to be defined at the beginning. By simply creating an empty object we are provided with
the flexibility to add attributes and variables as needed in the future.

In the second step, we query the local system for information. We use the Get-
NetIPAddress command to query the local network adapters. We use Select-Object
to filter the results for the information we are interested in and place the results in the
variable $ipAddresses. Next, we extend our custom PowerShell object with a new attribute
composed of our IP information.

In the third step, we save our custom PowerShell object to a file. The command Export-
CliXml exports PowerShell objects and saves them to XML files. These files can then be
retrieved at a later time and accessed as PowerShell objects. At this point, we can close our
PowerShell session and reboot the computer. Because the custom object is saved to a file, the
values will be consistent after a few minutes or a few years (assuming the file isn't deleted).

In the fourth step, we change the local network information. This step is optional and can
be performed manually or via PowerShell. The purpose for this step is to create configuration
changes to be reported later.

In the fifth and sixth steps, we repeat our first two steps to gather and catalog the new
network information.

In the seventh step, we use Import-CliXml to read into PowerShell our previous custom
object, this time into an object named $oldComp. At this point, we have two custom
PowerShell objects in memory: $oldComp and $myComp.

Lastly, we compare our custom objects. The PowerShell command Compare-Object
performs the comparison for us and returns a list of the information that has changed.
Additionally, it returns both the old and new values for visual comparison.

Chapter 11

329

There's more...
By using a custom PowerShell object, we can easily expand it to include additional
information. In this case we can add additional attributes to the $myComp object and then
automatically compare the current and old configurations. The change report can then be
viewed for an individual system, stored in a central database, or scheduled, and e-mailed
on a weekly basis.

Exporting a configuration report to Word
Once we have identified all of the information about a system, it can be helpful to create a
system information report. This report can take many forms, however often the most generally
accepted form is using Microsoft Word. Once created, the configuration can be e-mailed,
stored electronically, or printed and stored physically with the system.

In this recipe, we will create the framework for a Microsoft Word inventory report. In this
situation, we will only be reporting on the network configuration, however it can be easily
expanded to include the hardware, software, configuration, and security information.

Getting ready
For this recipe, we will be using a Windows Server 2012 system with Microsoft Word installed.

How to do it...
Perform the following to create a configuration report in Word:

1. Create our Word object.
Function New-WordDoc
{
 $oWord = New-Object -Com Word.Application
 Set-Variable -Name oDoc -Value $oWord.Documents.Add() -Scope
Global
 $oWord.Visible = $true
 Return $oWord
}
$oWord = New-WordDoc

Inventorying Servers with PowerShell

330

2. Insert a title.
Function Insert-WordTitle ($text)
{
 $objSelection = $oWord.Selection
 $objSelection.Style = "Title"
 $objSelection.TypeText($text)
 $oWord.Selection.EndKey(6) > $null
 $objSelection.TypeParagraph()
}
Insert-WordTitle $env:COMPUTERNAME

3. Insert a table of contents.
Function Insert-TOC
{
 $objSelection = $oWord.Selection
 $range = $objSelection.Range
 $toc = $oDoc.TablesOfContents.Add($range)
 $oWord.Selection.EndKey(6) > $Null
 $objSelection.TypeParagraph()
}
Insert-TOC

4. Insert headers.
Function Insert-WordH1 ($text)
{
 $objSelection = $oWord.Selection
 $objSelection.Style = "Heading 1"
 $objSelection.TypeText($text)
 $oWord.Selection.EndKey(6) > $null
 $objSelection.TypeParagraph()
}
Function Insert-WordH2 ($text)
{
 $objSelection = $oWord.Selection
 $objSelection.Style = "Heading 2"
 $objSelection.TypeText($text)
 $oWord.Selection.EndKey(6) > $null
 $objSelection.TypeParagraph()
}
Insert-WordH1 "Network Information"
Insert-WordH2 "IP Addresses"

Chapter 11

331

5. Collect the inventory data.
$myComp=@{}
$IPAddresses = Get-NetIPAddress | `
Select-Object InterfaceIndex, InterfaceAlias, IPAddress,
PrefixLength
$myComp.IPaddr = $IPAddresses

6. Insert a table to hold the information.
Function Insert-WordTable ([System.Array]$text){
 $headers = $text | Get-Member -MemberType NoteProperty | `
 Select-Object Name

 $numCols = $headers.count
 $numRows = $text.count
 IF($numCols -gt 0){
 $oTable = $oDoc.Tables.Add($oWord.Application.Selection.
Range, $numRows + 1, $numCols)
 $oTable.Style = "Light Shading - Accent 1"
 $oTable.Columns.AutoFit()

 $i=1
 $headers | `
 ForEach-Object{
 $oTable.cell(1,$i).Range.Text = $_.Name; $i++;
 }

 For($row=2; $row -lt $numRows+2; $row++){
 For($col=1; $col -lt $numCols+1; $col++){
 $oTable.Cell($row,$col).Range.Text=$text[$row-2].
($headers[$col-1].Name)
 }
 }
 $oWord.Selection.EndKey(6) > $Null
 }
}
Insert-WordTable $myComp.IPaddr

7. Update the table of contents.

$oDoc.Fields | ForEach-Object{ $_.Update() }

Inventorying Servers with PowerShell

332

How it works...
We start by creating our Microsoft Word object. To start, we create a reference to the COM
object Word.Application. Next, we use Set-Variable to add a new document to our
Word object. Here we specify the object to be global so that it can be referenced by other
functions within our script. Next, set $oWord.Visible to $true so that our Word object is
visible and then return a reference to the object.

We didn't need to make the Word object visible at this step. Instead
we could have kept it hidden and automatically save the file when
finished.

In the second step, we set up our document. We identify the computer name by calling
$env:COMPUTERNAME and pass it to our function which adds the computer name as the title
of the document. This function begins at the cursor's current location and configures it to use
the Title font style. The document title is added and finally a carriage return is sent to close
out the paragraph.

Next, we create a function Insert-TOC to insert a table of contents. At this point the TOC
will be empty, but it is put in place so that it can be updated later. The function starts at the
cursor's current location and creates a Range to place Word fields and reference objects.
The empty TOC is added and the range is closed by sending a carriage return.

In the fourth step, we begin with our Headers. Here, we are using the in-built styles Heading
1 and Heading 2 to signify our sections. These functions operate the same as our Title
function, except the style name is changed. The headers styles provide the necessary fonts
to segment the different sections, as well as markers for the table of contents to include later.
We add two headers: Network Information as Heading 1 to show general network
information, and IP Addresses as Heading 2 to show specific IP information.

In the fifth step, we collect our networking information. We start by creating an empty custom
PowerShell object named $myComp. We then use the Get-NetIPAddress function to query
the system for the local IP addresses. We filter the results for the attributes we are interested
in and place the results in a variable. Lastly, we add our results into a new attribute of our
PowerShell object.

In the sixth step, we write our values to Word using the Insert-WordTable function. The
function starts by identifying the column header names. The number of rows and columns
are identified and a new table is added to the document. First the column headers are written,
and then each row/column combination is iterated through, with values from the array placed
in the boxes. Lastly, the table is exited.

Lastly, we cycle through all of the fields in the document and execute the Update command.
This command updates the table of contents to include all of the Heading 1 and Heading
2 objects in the document.

Chapter 11

333

At this point, the document can be reviewed, printed, or saved for later review. An example
report is shown in the following screenshot:

See also
For more information on using PowerShell to create Word documents, see the following links:

 f http://blogs.technet.com/b/heyscriptingguy/archive/2008/11/11/
how-can-i-create-a-microsoft-word-document-from-wmi-
information.aspx

 f http://blogs.technet.com/b/heyscriptingguy/archive/2012/06/13/
use-powershell-to-create-a-word-table-that-shows-fonts.aspx

http://blogs.technet.com/b/heyscriptingguy/archive/2008/11/11/how-can-i-create-a-microsoft-word-document-from-wmi-information.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2008/11/11/how-can-i-create-a-microsoft-word-document-from-wmi-information.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2008/11/11/how-can-i-create-a-microsoft-word-document-from-wmi-information.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2008/11/11/how-can-i-create-a-microsoft-word-document-from-wmi-information.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/06/13/use-powershell-to-create-a-word-table-that-shows-fonts.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/06/13/use-powershell-to-create-a-word-table-that-shows-fonts.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/06/13/use-powershell-to-create-a-word-table-that-shows-fonts.aspx

12
Server Backup

This chapter covers the following recipes:

 f Configuring backup policies

 f Initiating backups manually

 f Restoring files

 f Restoring Windows system state

 f Restoring application data

 f Creating a daily backup report

Introduction
Windows Server 2012 provides a powerful and flexible backup toolset. The backup can be
configured to protect the full server, specific volumes, folders or files, and the system state.
Once backups are completed, we can recover files, volumes, applications, or even the
entire server.

This chapter covers setting up and scheduling backups on a Windows server. This will
include on-demand backups, restoring files and Windows components, and standardizing
the configuration among systems.

Configuring backup policies
A backup policy defines what is backed up in a system and when is it backed up. Instead of
defining what you want to back-up every time you execute the backup process, the policy allows
an Administrator to define what is being retained, and the process happens automatically.

Server Backup

336

There are normally two primary goals for creating system backups: operational recovery and
disaster recovery. Operational recovery is used to recover individual files, folders, or programs
in case of accidental deletion or recover of an older version. Disaster recovery (DR) is used to
recover an entire system in case of loss of the system. For DR purposes, it is generally suggested
to backup the entire system, and use exclusions to keep from backing up certain files.

Windows Server Backup provides capabilities for both types of backups and restores. In this
recipe, we will perform a DR-level backup of our system that allows for recovery of the entire
system as well as individual components.

Getting ready
For this recipe, we will be working with a newly installed Windows Server 2012 system with
two hard disks: C:\ and E:\. We will configure the backup policy to protect the C:\ drive
system state, allow for bare metal recovery, and store the backup files on the E:\ drive.

How to do it...
Carry out the following steps in order to configure a backup policy:

1. Install Windows Server Backup feature using the following command:
Add-WindowsFeature Windows-Server-Backup -IncludeManagementTools

2. Create a backup policy:
$myPol = New-WBPolicy

3. Add the backup sources.
$myPol | Add-WBBareMetalRecovery

$myPol | Add-WBSystemState

$sourceVol = Get-WBVolume C:

Add-WBVolume -Policy $myPol -Volume $sourceVol

When executed, the results will be returned to the screen, as shown in the
following screenshot:

Chapter 12

337

4. Define the backup target.
$targetVol = New-WBBackupTarget -Volume (Get-WBVolume E:)

Add-WBBackupTarget -Policy $myPol -Target $targetVol

When executed, confirmation of the target will be returned, as shown in the
following screenshot:

5. Define the schedule.
Set-WBSchedule -Policy $myPol -Schedule ("12/17/2012 9:00:00 PM")

6. Save the policy.

Set-WBPolicy -Policy $myPol

How it works...
We start by calling Add-WindowsFeature to install the Windows Server Backup
feature. This feature is not included in the default Windows Server configuration and needs
to be installed as an additional component, or added in an answer file when the server is
installed. The installation of this component does not require a reboot, and can be done
without interrupting the normal service of the server.

In the second step, we create and configure our backup policy. We start by calling New-
WBPolicy to create a blank backup policy and assign it to the variable $myPol.

Next, in steps 3 and 4, we add our backup sources. In this instance, we are adding three
backup sources:

 f Add-WBBareMetalRecovery: This allows for recovery of the system in case of
a total system failure. This feature allows you to restore the system to dissimilar
hardware or into a virtual environment.

 f Add-WBSystemState: This feature backs up the registry, user database, and
other system components.

 f Add-WBBackupTarget: This feature backs up all files on the C:\ drive.

Server Backup

338

In step 5, we define the backup schedule. Here we use Set-WBSchedule to define the
schedule to back up the system once per day at 9 P.M., starting on December 17th. If desired,
multiple schedules can be defined with this command.

Lastly, we use Set-WBPolicy to save the policy to the server.

There can only be one backup policy for a server. If additional policies
are created, they overwrite the existing policy.

There's more...
By default, Windows Server Backup includes several files and locations to be excluded during
backup. The default set contains information normally not needed for a restore (such as the
page file, memory dumps, temporary files, and downloaded but not installed updates). A
full list of excluded files and directories can be found at HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\BackupRestore\FilesNotToBackup.

Additional exceptions can be added to this list in the form of [Drive][Path]\FileName
[/s].

See also
 f For more information about the PowerShell Cmdlets for Windows Backup, see

http://technet.microsoft.com/en-us/library/jj902428.aspx

Initiating backups manually
Once a backup policy is defined, the backups will occur automatically according the
defined schedule. However, there are occasions when an on-demand or one-off backup is
necessary—for instance before performing system maintenance or installing new software.

In this recipe, we will show how to perform an on-demand backup using the existing backup
policy outside of the predefined schedule. Additionally, we will create a one-off backup policy
to back-up the files and folders in C:\InetPub and store them on the E:\ drive.

Getting ready
For this recipe, we will be using a system configured for backups similar to the previous
recipe Configuring backup policies.

http://technet.microsoft.com/en-us/library/jj902428.aspx
http://technet.microsoft.com/en-us/library/jj902428.aspx

Chapter 12

339

How to do it...
1. Initiate the default backup policy.

Get-WBPolicy | Start-WBBackup

2. Monitor the backup using Get-WBSummary command:
Get-WBSummay

When executed, the status is displayed, as shown in the following screenshot:

3. Perform a one-off backup of C:\InetPub using the following command:

$myPol = New-WBPolicy

$mySpec = New-WBFileSpec -FileSpec "C:\InetPub"

Add-WBFileSpec -Policy $myPol -FileSpec $mySpec

$targetVol = New-WBBackupTarget -Volume (Get-WBVolume E:)

Add-WBBackupTarget -Policy $myPol -Target $targetVol

Start-WBBackup -Policy $myPol

When executed, the backup will begin, as shown in the following screenshot:

Server Backup

340

How it works...
We start by calling Get-WBPolicy to query the system for the current backup policy. We then
pipe the current backup policy into the Start-WBBackup command to initiate an on-demand
backup. This uses the predefined backup policies and simply starts the backup outside of the
normal backup schedule.

In the second step, we use Get-WBSummary to view the status of the active backup.
The main item of interest at this point is the CurrentOperationStatus, which
reports that the backup is in progress.

In the third step, we perform a one-off backup of the C:\InetPub folder. This is useful
when making changes to a specific application or folder structure and you wish to back-up
the effected files before making changes. This process is similar to configuring the system
backup policy; however, instead of backing up the entire system or volume, we are backing
up only a single folder. Additionally, in this case, we do not save our policy; instead, we call
Start-WBBackup to start our temporary policy immediately.

There's more...
In addition to using Get-WBSummary to view the backup status, you can also review the backup
logs at C:\Windows\Logs\WindowsServerBackup. Each activity creates two log files in this
directory: one for successes and one for failures. These files can be viewed in a text editor or
can be parsed using PowerShell to identify the status of the backup environment.

Chapter 12

341

Restoring files
Once backed up, individual files or folders can be recovered as part of an operation recovery.
If a file is deleted or overwritten, it can be restored from a prior backup to recover a file or roll
back changes to an earlier version of a file.

In this recipe, we will perform recoveries of individual files and folders.

Getting ready
For this recipe, we will be using a server configured for backups similar to the Configuring
backup policies recipe that has successfully completed at least one backup.

How to do it...
1. Identify the backup set.

Get-WBBackupSet

When executed, the available backup sets will be displayed, as shown in the
following screenshot:

$myBackup = Get-WBBackupSet | `

Where-Object VersionId -eq 03/03/2013-19:31

Server Backup

342

2. Perform a single file recovery.
Start-WBFileRecovery -BackupSet $myBackup `

-SourcePath c:\temp\perfcounter.csv

3. Recover a folder.

Start-WBFileRecovery -BackupSet $myBackup `

-SourcePath c:\inetpub\ -Recursive -TargetPath c:\

When executed, the recovery process will begin, as shown in the following screenshot:

How it works...
We start by identifying the backup set from which we want to restore the files. First, we
execute Get-WBBackupSet to list all available backups on the computer. Next, we filter
based on the VersionId of the backups and place a reference to the source backup
into the $myBackup variable.

Next, we perform a single file recovery. This recovery identifies a single file in the backup
set and restores it to the original file location.

Next, we perform a folder recovery. In this case, we include the –Recursive switch,
which instructs the backup to restore the folder and all of its subfolders from the backup
source. Additionally, we use the –TargetPath switch to define where the restored files
should be placed. In the case of a folder recovery, the target should be the parent folder.
In case of a redirected restore, or a restore to a different location, the target will be the
destination for the recovered files.

Chapter 12

343

There's more...
Windows Backup can restore files using various methods. To define the restoration type,
add the –Option switch with one of the following settings:

 f SkipIfExists: This setting will only restore files that have been moved or deleted

 f CreateCopyIfExists: This is a default setting. If the file exists, this setting will
rename the restored file

 f OverwriteIfExists: If the file exists, this setting will overwrite it with the
restored file

Restoring Windows system state
The Windows system state contains the components necessary to recover the individual
system without data or applications. Server access, file shares, Active Directory, Certificate
Services, Clustering, Registry, DHCP, and IIS are a few components that are included in the
system state backup. When recovering an entire server for DR or testing, the system state
is a key component to the recovery process.

Getting ready
For this recipe, we will be using a server configured for backups, similar to the Configuring
backup policies recipe, and that has successfully completed at least one system state backup.

How to do it...
1. Identify the backup set.

Get-WBBackupSet

$myBackup = Get-WBBackupSet | `

Where-Object VersionId -eq 03/03/2013-19:31

2. Initiate the system state restore.
Start-WBSystemStateRecovery -BackupSet $myBackup

Server Backup

344

When executed, the system state will restore as follows:

3. Select Y to reboot the system.

How it works...
We start by identifying the backup set that we want to restore from. First, we execute
Get-WBBackupSet to list all available backups on the computer. Next, we filter based
on the VersionId of the backups and place a reference to the source backup into the
$myBackup variable.

Next, we use Start-WBSystemStateRecovery to initiate the restoration process.
This process will restore the registry and files associated with the system state, and
overwrite the current configuration. When finished, if the system does not automatically
reboot, restart the system.

There's more...
This same process is used to perform an Active Directory (AD) restore on a domain
controller. To perform an AD restore, the system needs to first be rebooted into the
Directory Services Restore mode. Then, the above process can be followed
with the –AuthoritativeSysvolRecovery switch included.

Restoring application data
Many applications register with the Windows Backup service. These applications can then
be backed up and restored independently of the rest of the system. Active Directory, Registry,
and Hyper-V are examples of some of the in-built services that support this feature. Additional
applications by Microsoft and third-party vendors can also utilize this feature.

Depending on the applications installed when backups occur, different applications will be
available for restore. In this recipe, we will restore the system's Registry.

Chapter 12

345

Getting ready
For this recipe, we will be using a system configured similar to the first recipe, Configuring
backup policies, and that has had at least one full system backup.

How to do it...
1. Identify the backup set.

Get-WBBackupSet

$myBackup = Get-WBBackupSet | `

Where-Object VersionId -eq 03/03/2013-19:31

2. Determine the application.
$myApp = $myBackup.Application | `

Where-Object Identifier -eq Registry

3. Start the recovery.

Start-WBApplicationRecovery -BackupSet $myBackup `

-ApplicationInBackup $myApp

How it works...
We start by identifying the backup set that we want to restore from. First, we execute Get-
WBBackupSet to list all available backups on the computer. Next, we filter based on
the VersionId of the backups and place a reference to the source backup into the
$myBackup variable. Note, here, the applications available in the backup are for restore.

Next, we search our backup object and list the available applications. In this case, we are
filtering based on the Registry application. We then place a reference to the application
into the $myApp variable.

Lastly, we start the application recovery. Depending on the application being restored, the
application may need to be stopped for the restore, or the system may need to be rebooted.

There's more...
Multiple applications register with Windows Server Backup automatically. On a newly
installed system, only the Registry will be available for recovery as an application, but
additional Windows features can register additional applications. Additional features
include, Active Directory, Hyper-V, and so on.

Server Backup

346

Creating a daily backup report
When performing backups of a system, one of the most critical components is reporting on
the success or failure of the backups. With backup reports, you can prove that the backups
are performing properly, resolve problems, identify recurring issues, and determine if the
sizing and performance is sufficient for your environment.

In this recipe, we will create a basic backup report that will be sent to an Administrator
every day. The report will capture the basic success and failure status for backups of a server.

Getting ready
For this recipe, we will be using a system configured similar to the first recipe,
Configuring backup policies.

How to do it...
1. Define the report.

$now = Get-Date

$startTime = $now.AddDays(-2)

$myReport = "Backup Report for $Env:COMPUTERNAME on $now`n"

2. Query the backup sets.
$myReport += "`tBackup Sets"

$myReport += Get-WBBackupSet | `

Where-Object BackupTime -gt $startTime | Out-String

Get-WBBackupSet | where BackupTime -gt $startTime | Out-String

3. Create an array of interesting alert IDs.
$myReport += "`tEvent Log Messages"

$myArray = 1, 4, 5, 8, 9, 14, 17, 18, 19, 20, 21, 22, 49, 50, 52,
100, 224, 227, 517, 518, 521, 527, 528, 544, 545, 546, 561, 564,
612

4. Search the Windows event logs for events.
$myReport += Get-WinEvent -LogName "Microsoft-Windows-Backup" | `

Where-Object {$_.TimeCreated -ge $startTime} | `

Where-Object {$myArray -contains $_.ID} | `

Format-Table TimeCreated, LevelDisplayName, ID, Message | Out-
String

Chapter 12

347

5. Search the backup logs for errors.
$myReport += "`tWBS error logs"

$myLogs = Get-ChildItem C:\Windows\Logs\WindowsServerBackup\
*.log | `

Where-Object LastWriteTime -gt $startTime

$myReport += $myLogs | Select-String "^Error" | Out-String

6. Send the e-mail.
Send-MailMessage -From BackupAdmin@contoso.com `

-To Admin@contoso.com -SmtpServer mail.corp.contoso.com `

-Body $myReport `

-Subject "Backup Report for $Env:COMPUTERNAME on $now"

7. Save and schedule the script using the task scheduler.

Define the action to be executed

$taskAction = New-ScheduledTaskAction -Execute `

"%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe" `

-Argument "C:\scripts\dailyBackup.ps1"

Define the execution schedule

$taskTrigger = New-ScheduledTaskTrigger -Daily -At 5am

Define the user account to execute the script

$taskUser = "Corp\ScriptAdmin"

$taskPassword = 'P@$$w0rd'

Name the task and register

$taskName = "Daily Backup Report"

Register-ScheduledTask -TaskName $taskName -Action $taskAction `

-Trigger $taskTrigger -User $taskUser -Password $taskPassword

Server Backup

348

How it works...
We start by determining that we are looking for information on backups from the last two days
and placing the date and time into the variable $startTime. Next, we create a $myReport
variable that will hold the contents of the report. We begin the report with information about
the system and the report time.

In the second step, we list the available backup sets during our report window. We call
Get-WBBackupSet and filter based on the BackupTime attribute to only return backups
from the last two days. We then pipe the contents through Out-String to convert the
BackupSet object to text, and then append this information to $myReport.

Next, we create an array of alert IDs. These are alert IDs that most frequently report on the
success or failure of the backup and restore processes. These alert IDs include backups
starting, backups ending, restores, and common errors that occur during backups and restores.

In the fourth step, we query the Microsoft-Windows-Backup event log. The log is filtered
based on the date of the alert and on the event IDs in our array.

In the fifth step, we search the backup log files for errors. We start by getting a list of all of the
log files in C:\Windows\Logs\WindowsServerBackup that have been updated in the last
two days. Next, we pipe each log through Select-String to search for the word Error at the
beginning of a line in the log files. The returned information is then included in our e-mail text.

In the sixth step, we e-mail our report using Send-MailMessage. Once we confirm the script
is working properly, we can save it as a file and schedule it using Windows Task Scheduler.

Index
Symbols
$ErrorActionPreferece variable

about 48
settings 48

$installer object 242
$myNode variable 119
$searcher object 242
$session object 242
$updateCollection object 242, 243
 private network, Hyper-V 136

A
Access Control Entry (ACE) 176
Access Control Lists (ACL) 176, 264
Active Directory (AD)

about 85
expired computers, finding 90, 91

additional IP addresses 65
additional routes 66
AddPrinterConnection method 268
AddWindowsPrinterConnection method 268
AD Users

additional properties 88
creating 84-88
reporting on 89, 90
searching 89, 90
template user 88

AllSigned execution policy 10
alternate streams 178
application data

restoring 344, 345
auto-approvals, WSUS

configuring 236-239

B
backup policies

about 335
configuring 336, 337

backups
initiating manually 338-340

basic array validation 26
basic float validation 25
basic integer validation 25
basic string validation 24
basic validation-testing methods 24
Best Practices Analyzer

about 282
using 282, 284

binding
about 108
host header limitations 108
host header, with SSL 109
port binding limitations 108

BranchCache
about 221
configuring 222-224
file servers 221
URL 224
web servers 221

Branch Office Direct Printing
about 270
enabling 272

Bypass execution policy 10

C
Central Certificate Store

configuring 103, 104

350

Certificate Authorities (CA) 33
Enterprise root CA 82
Enterprise subordinate CA 82
Standalone root CA 82
Standalone subordinate CA 82

Certificate Authority (CA) 80
change report

creating 327, 328
CIFS 196
CIFS shares

accessing, from PowerShell 200, 201
creating 196-199
making highly available 214-217
securing 196-199
URL 200

clients
mapping, to printers 266-268

Cluster Shared Volumes (CSV) 214
Cmdlets

creating 51-55
using 55
working 56

Common Internet File Services. See CIFS
computer groups, WSUS

creating 235, 236
configuration report

exporting, to Word 329-332
Copy-Item command 122
Create-User fucntion 87
Create-Users fucntion 87
CurrentActiveCacheSize 224

D
daily backup report

creating 346-348
data

piping, to functions 30, 31
Data Collector Sets

configuring 299-302
example 304
managing 302, 303

data formatting
using, for exporting data views 42, 43

DFS and DFSR replication
configuring 218-220

DHCP

about 75
exclusions, adding 76
reservations, adding 76

DHCP addresses
converting, to static 78, 80

DHCP scopes
configuring 75, 76

DHCP server failover
configuring 77

Distributed File System (DFS) 218
Distributed File System Replication

(DFSR) 218
DNS

zones, configuring 70-73
DNS records

updating 74
domain controller

computer, joining to domain 69
installing 67-69
push install 69

Domain Specific Languages. See DSLs
Dynamic Host Configuration Protocol. See

DHCP

E
e-mail

sending, PowerShell used 36, 37
Enterprise root CA 82
Enterprise subordinate CA 82
error handling

about 46, 47
error codes, clearing 48

event logs
forwarding, to central log server 288-294
searching, for specific events 286-288

Excel
WSUS data, exporting to 253, 255

Execution Policies
about 8
AllSigned 10
Bypass 10
RemoteSigned 10
Restricted 10
Undefined 10
Unrestricted 10

external network, Hyper-V 136

351

F
failover clustering

setting up, for Hyper-V 168-171
file quotas

hard quotas 190
managing 190-193
soft quotas 190

files
restoring 341, 342

file servers, BranchCache 221
filtering

about 38
methods 39

Force switch 10
functions, PowerShell script

creating 11, 12
using 13

G
Get-Counter cmdlet 298
Get-Counter command 117
Get-Disk function 315
GetLastSynchronizationInfo() command 229
Get-NetIPAddress command 328 320
Get-RandomPass fucntion 87
GetSubscription() method 229
Get-SynchronizationProgres() command 229
GetSynchronizationStatus() command 229
Get-TroubleshootingPack 282
GetUptimeCommand class 56
graphs

example 309
generating 306-309

Group Policy (GPO) 222

H
hard quotas 190
hardware

inventorying, with PowerShell 313-315
Host Bus Adapter (HBA) 204
host headers 107
Hyper-V

about 128
basic management 128

configuring 129
failover clustering, setting up 168, 170
installing 128, 129
networking 136
securing 133-135
virtual machines, creating 139-141
working 130

Hyper-V disk types
URL 150

Hyper-V hosts
networks, synchronizing 157-159

Hyper-V networks
external network 136
internal network 136
management network, creating 136
NLB Comm network, creating 136
private network 136
production network, creating 136
setting up 137
working 138

Hyper-V performance
monitoring 153-157

Hyper-V replication
configuring 159-162

Hyper-V utilization
monitoring 153-157

I
ICMP traffic 278
IGMP multicast 115
IIS

about 97
configuring 98
configuring, for SSL 100-102
installing 98

IIS bindings
configuring 106, 107

IIS log files
managing 111, 112

IIS logging
configuring 109, 110

input type validations
basic array validation 26
basic float validation 25
basic integer validation 25
basic string validation 24

352

installed software
inventorying 316, 317

internal network, Hyper-V 136
Internet Information Services. See IIS
Internet Small Computer System Interface

(iSCSI) 202
Internet Storage Name Service. See iSNS
IPv6 addressing 64
iSCSI disk

using 204, 205
iSCSI Qualified Name (IQN) 203
iSCSI target

creating 202, 203
URL 204

iSNS
about 206
configuring 207-209
URL 209
using 208

J
jobs

using 44, 45

L
load balancing, across NLB nodes

monitoring 116-118
Local Area Network (LAN) 202
logFile.directory property 110
logfile.enabled parameter 111
logFile.logFormat property 110
logFile.period property 110
log files, IIS

managing 111
LongWrite function 45

M
management network, Hyper-V 136
Microsoft Hyper-V. See Hyper-V
Microsoft Word

configuration report, exporting to 329-332
missing updates, WSUS

reporting 239, 240

modules, PowerShell script
auto-loading 18
creating 15-17
module manifest 18
using 15, 16, 17

MSFT_Disk class 315
multicast mode 115
multiple switches, VM

MemoryStartupBytes 140
NewVHDPath 140
NewVHDSizeBytes 140
SwitchName 140

Multiply-Numbers function
using 47

N
Network Access Protection 321
Network File System. See NFS
Network Load Balancer. See NLB
networks

synchronizing, between Hyper-V
hosts 157-159

New-NetIPAddress function 65
NFS

about 209
URL 212

NFS exports
creating 210-212
mounting 212, 213

NLB
about 112
configuring, across multiple servers 112-115

NLB Comm network, Hyper-V 136
NLB configuration

NLB modes 115
website, accessing 115

NLB nodes
load balancing, monitoring 116, 117
placing, into maintenance 118, 119

Non-Uniform Memory Architecture. See NUMA
NTFS alternate streams

about 181
managing 178-180

NTFS deduplication
configuring 182, 183
monitoring 184-186

353

NTFS file permissions
about 173
cloning, for new folder 175
editing, on Excel spreadsheet 174
inheritance, disabling 176
inheritance, enabling 176
managing 173, 174
ownership, taking 175
reassigning 175

NUMA
configuring 131, 132
reference link 133
working 133

number formatting
using, for exporting numbers 40, 41

P
parameters

validating, in functions 24-29
performance counters

reading 295-298
performance data

reporting 304, 305
performance, managing

Data Collector Sets, configuring 299-303
graphs, generating 306-309
performance counters, reading 295-298
performance data, reporting 304-306
server performance report, creating 309, 310

Performance Monitor 309
PKI environment

about 81
building 80-84

postinstall phase, WSUS 226
PowerShell

about 8
additional IP addresses 65
additional routes 66
basic validation-testing methods 24
Branch Office Direct Printing,

enabling 270-273
clients, mapping to printers 266-270
Cmdlets, creating 51
error handling 46
filtering 38
hardware, inventorying 313-315

installed software, inventorying 316, 317
IPv6 addressing 64
number formatting 40
printer drivers, changing 260, 261
printer security, adding 264, 265
printer security, removing 264, 265
printer security, reporting 261-263
printers, setting up 258
printers, sharing 258, 259
printer usage, reporting 273, 274
server backup 335
sorting 38
system configuration, inventorying 318-320
used, for sending e-mails 36, 37

PowerShell cmdlets, for WSUS
URL 229

PowerShell modules
URL 19

PowerShell profiles
creating 20, 21
reference links 22
using 21

PowerShell scripts
functions, creating 11, 12
functions, using 13
security, managing 8, 9
signing 33-35
tuning, for performance 49, 50

PowerShell security 22
PowerShell session

recording, with transcripts 32
PowerShell transcripts 32
primary domain controller (PDC) 90
printer drivers

changing 260, 261
printers

setting up 258, 259
sharing 258, 259

printer security
adding 264, 265
removing 264, 265
reporting 261-263

printer usage
reporting 273, 274

PrintTestPage command 273
private key 104
Private Key Infrastructure (PKI) 33

354

production network, Hyper-V 136
PSDrive 99
public key 104

R
Redundant Array of Independent Disks

(RAID) 186
Remote Installation Services (RIS) 182
RemoteSigned execution policy 10
Remove-Job 45
RemovePrinterConnection method 268
restricted execution policy 10

S
SDDL

about 264
URL 265

security
managing, on PowerShell scripts 8, 9

Security Definition Description Language. See
SDDL

server
testing 277-280

server backup
about 335
application data, restoring 344, 345
backup policies, configuring 335-337
backups, initiating manually 338-340
daily backup report, creating 346, 348
files, restoring 341, 342
Windows system states, restoring 343, 344

Server Message Block (SMB) 196
Server Name Indicators (SNI) 109
server performance report

creating 309, 310
sessions

recording, with transcripts 32
SetAccessRuleProtection command 178
SetDefaultPrinter method 268
Set-DhcpServerv4OptionValue command 76
settings, $ErrorActionPreferece variable

continue 49
inquire 49
SilentlyContinue 49
stop 48

Set-WebBinding 108
Smart Screen 321
soft quotas 190
sorting 38
SSL encryption

IIS, configuring for 100
Standalone root CA 82
Standalone subordinate CA 82
StartSynchronizationForCategoryOnly()

method 229
static networking

configuring 60-63
storage pools

about 186
configuring 186-188
reporting 188, 189

superuser report
creating 92, 93
e-mailing 93, 94

SysPrep
URL 150

system configuration
inventorying 318

system security
Network Access Protection 321
reporting 321-326
Smart Screen 321
User Account Control 321
Windows Activation 321
Windows Update 321

T
TCP/IP 60
TCP/IP Offload Engine (TOE) 204
Test-Connection command 278
Test-PhoneNumber function 28
three-tier website

configuring 120, 121
content, promoting 121-123

troubleshooting packs
using 280, 281

troubleshooting servers
Best Practices Analyzer, using 282, 284
event logs, forwarding to central log server

288-294

355

event logs, searching for specific
events 286, 287

server, testing 277-279
Trusted Publishers store 10
Try/Catch block

using 47, 48
Type Validation 29

U
Undefined execution policy 10
Unicast 115
UnInstall command 244
Universal Naming Convention (UNC) 196
Unrestricted execution policy 10
update report, WSUS

creating 249-251
updates, WSUS

installing 241, 242
uninstalling 244-246

User Account Control 321

V
ValidateLength function 29
ValidatePattern function 29
ValidateRange function 29
ValidateScript function 29
ValidateSet function 29
variables

passing, to functions 22, 23
Virtual LANs (VLANs) 144
virtual machine. See VM
Virtual Machine Management Service

(VMMS) 133
VM

creating 139
deploying, template used 148, 149
migrating, between hosts 163-165
multiple switches 140
working 140

VM hardware
configuring 146, 147

VM networking
configuring 144
working 145, 146

VM snapshots
managing 150, 151
reporting 151, 152

VM state
managing 141-143

VM storage
migrating, between hosts 166, 167

W
web servers, BranchCache 221
website access and errors

reporting 123, 125
Wide Area Network (WAN) 202
Win32_Group WMI class 49
Win32_PingStatus object 278
Win32_Product class 318
Win32_Registry class 320
Win32_TimeZone class 320
Windows Activation 321
Windows Network Services

domain controller, installing 67-69
static networking, configuring 60- 64
zones, configuring in DNS 70-73

Windows Server Update Services. See WSUS
Windows system state

restoring 343, 344
Windows Update 321
Windows update client

about 232
configuring 232-234

Windows Update Standalone Installer com-
mand-line too 246

WriteXML method 255
WSUS

about 226
computer groups, creating 235, 236
configuring, to inventory clients 246-248
installing 226, 227
missing updates, reporting 239-241
postinstall phase 226
update report, creating 249-251
updates, installing 241-243
updates, uninstalling 244-246
working 228, 229

356

WSUS auto-approvals
configuring 236-239

WSUS data
exporting, to Excel 253-255

WSUS update synchronization
configuring 229-231

WUSA.exe 246

Z
zones

configuring, in DNS 70-72
listing 74

Thank you for buying
Windows Server 2012 Automation with PowerShell

Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Windows
PowerShell 3.0 First Look
ISBN: 978-1-849686-44-0 Paperback: 200 pages

A quick succinct guide to the new and exciting features
in PowerShell 3.0

1. Explore and experience the new features found in
PowerShell 3.0

2. Understand the changes to the language and the
reasons why they were implemented

3. Discover new cmdlets and modules available in
Windows 8 and Server 8

Windows Server 2012 Hyper-V
Cookbook
ISBN: 978-1-849684-42-2 Paperback: 304 pages

Over 50 simple but incredibly effective recipes for
mastering the administration of Windows Server Hyper-V

1. Take advantage of numerous Hyper-V best
practices for administrators

2. Get to grips with migrating virtual machines
between servers and old Hyper-V versions,
automating tasks with PowerShell, providing
a High Availability and Disaster Recovery
environment, and much more

3. A practical Cookbook bursting with essential
recipes

Please check www.PacktPub.com for information on our titles

SQL Server 2012 with
PowerShell V3 Cookbook
ISBN: 978-1-849686-46-4 Paperback: 634 pages

Increase your productivity as a DBA, developer, or IT
Pro, by using PowerShell with SQL Server to simplify
database management and automate repetitive,
mundane tasks

1. Provides over a hundred practical recipes that
utilize PowerShell to automate, integrate and
simplify SQL Server tasks

2. Offers easy to follow, step-by-step guide to getting
the most out of SQL Server and PowerShell

3. Covers numerous guidelines, tips, and
explanations on how and when to use PowerShell
cmdlets, WMI, SMO, .NET classes or other
components

Instant Oracle Database and
PowerShell How-to [Instant]
ISBN: 978-1-849688-58-1 Paperback: 80 pages

Utilize the power of Microsoft's powerful scripting engine
to automate database tasks with Orcale from PowerShell

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Load Oracle Data Access components and
connect to Oracle databases

3. Retrieve, format, filter, and export data

4. Execute database procedures and modify
database objects

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding PowerShell Scripting
	Introduction
	Managing security on PowerShell scripts
	Creating and using functions
	Creating and using modules
	Creating and using PowerShell profiles
	Passing variables to functions
	Validating parameters in functions
	Piping data to functions
	Recording sessions with transcripts
	Signing PowerShell scripts
	Sending e-mail
	Sorting and filtering
	Using formatting to export numbers
	Using formatting to export data views
	Using jobs
	Dealing with errors in PowerShell
	Tuning PowerShell scripts for performance
	Creating and using Cmdlets

	Chapter 2: Managing Windows Network Services with PowerShell
	Introduction
	Configuring static networking
	Installing domain controller
	Configuring zones in DNS
	Configuring DHCP scopes
	Configuring DHCP server failover
	Converting DHCP addresses to static
	Building out a PKI environment
	Creating AD users
	Searching for and reporting on AD users
	Finding expired computers in AD
	Creating and e-mailing a superuser report

	Chapter 3: Managing IIS with PowerShell
	Introduction
	Installing and configuring IIS
	Configuring IIS for SSL
	Configuring a Central Certificate Store
	Configuring IIS bindings
	Configuring IIS logging
	Managing log files
	Configuring NLB across multiple servers
	Monitoring load balancing across NLB nodes
	Placing NLB nodes into maintenance
	Configuring a development/staging/production site scheme
	Promoting content in websites
	Reporting on website access and errors

	Chapter 4: Managing Hyper-V with PowerShell
	Introduction
	Installing and configuring Hyper-V
	Configuring NUMA
	Securing Hyper-V
	Hyper-V networking
	Creating virtual machines
	Managing VM state
	Configuring VM networking
	Configuring VM hardware
	Quickly deploying VMs using a template
	Managing and reporting on VM snapshots
	Monitoring Hyper-V utilization and performance
	Synchronizing networks between
Hyper-V hosts
	Hyper-V replication
	Migrating VMs between hosts
	Migrating VM storage between hosts
	Using failover clustering to make VMs highly available

	Chapter 5: Managing Storage with PowerShell
	Introduction
	Managing NTFS file permissions
	Managing NTFS alternate streams
	Configuring NTFS deduplication
	Monitoring NTFS deduplication
	Configuring storage pools
	Reporting on storage pools
	Managing file quotas

	Chapter 6: Managing Network Shares with PowerShell
	Introduction
	Creating and securing CIFS shares
	Accessing CIFS shares from PowerShell
	Creating iSCSI target and virtual disk
	Using a iSCSI disk
	Configuring and using iSNS
	Creating an NFS export
	Mounting NFS exports
	Making CIFS shares highly available
	Configuring DFS and DFSR replication
	Configuring BranchCache

	Chapter 7: Managing Windows Updates with PowerShell
	Introduction
	Installing Windows Server Update Services
	Configuring WSUS update synchronization
	Configuring the Windows update client
	Creating computer groups
	Configuring WSUS auto-approvals
	Reporting missing updates
	Installing updates
	Uninstalling updates
	Configuring WSUS to inventory clients
	Creating an update report
	Exporting WSUS data to Excel

	Chapter 8: Managing Printers
with PowerShell
	Introduction
	Setting up and sharing printers
	Changing printer drivers
	Reporting on printer security
	Adding and removing printer security
	Mapping clients to printers
	Enabling Branch Office Direct Printing
	Reporting on printer usage

	Chapter 9: Troubleshooting Servers with PowerShell
	Introduction
	Testing if a server is responding
	Using troubleshooting packs
	Using Best Practices Analyzers
	Searching event logs for specific events
	Forwarding event logs to a central
log server

	Chapter 10: Managing Performance with PowerShell
	Introduction
	Reading performance counters
	Configuring Data Collector Sets
	Reporting on performance data
	Generating graphs
	Creating a server performance report

	Chapter 11: Inventorying Servers with PowerShell
	Introduction
	Inventorying hardware with PowerShell
	Inventorying the installed software
	Inventory system configuration
	Reporting on system security
	Creating a change report
	Exporting a configuration report to Word

	Chapter 12: Server Backup
	Introduction
	Configuring backup policies
	Initiating backups manually
	Restoring files
	Restoring Windows system state
	Restoring application data
	Creating a daily backup report

	Index

